©
2002 M. Flashman
Introduction to the Sensible Calculus Program (SCP): The Sensible Calculus Program reflects work of over twenty years by Professor Martin Flashman that started in developing a thematic approach to the first year of calculus. (See [MAA,4].) Recognizing that a reform of the college precalculus function/algebra course would yield extra benefits in the success of calculus students, in about 1990 Professor Flashman expanded the vision of the program to include calculus preparation. The goal of the current project is the creation of a precalculus and a calculus textbook and a full calculus program with a consistent thematic and conceptual approach. The program will prepare students in the precalculus component for learning calculus by providing motivation, background, concept development, and opportunities for real learning. The calculus component will build on these foundations with an approach that extends precalculus maturation into calculus. Two (among several) distinctive features of the SCP approach will apply to both the precalculus and calculus components:
The Agenda and
Vision. Calculus
projects over the passed fifteen years have tried to improve the
quality
of calculus instruction with approaches mixing technology, pedagogical
tactics, and curriculum revisions. As a result there has been much
progress
in rethinking the essential elements for a successful calculus program,
leading to a general acceptance of many features of the reformed
calculus
agenda. Here is a brief statement of the current agenda and vision that
the SCP addresses and which provide the fundamental direction for The
Sensible
Calculus
Book.
The Sensible Calculus Program Approach: The SCP
focuses on the themes of
differential
equations [FL]
and estimation throughout the first year of calculus, using modelling
as
a central motivation for applications of the calculus [FL2].
In
the
subsequent third semester or fourth quarter study of the calculus
of several variables and the vector calculus these themes continue
making
an altogether unified and coherent approach to calculus. These themes
and
motivation have gained general approval from many of today's best
selling
textbooks. Unfortunately, there is no book today that succeeds in
presenting
the calculus consistently with these underlying principles. Along with
thematic consistency, an important and unique pedagogical feature of
the
SCP text is the consistent use of interpretations to provide meaning
for
calculus concepts. Frequently examples of models or arguments will be
presented
before more general applications and proofs. This organization is based
on the pedagogical principle that students can understand the specific
and particular in experience and then generalize more easily then they
can understand a general proposition or proof and the apply it to the
particular. Visualizations and Transformation Figures: Practically all major calculus concepts and techniques are interpreted with at least two views:
A transformation figure visually distinguishes the argument of a function from its value by repesenting each as a point on distinct parallel source (a on the X-Axis) and target lines (b on the Y- axis). These points are then connected with a line segment or an arrow joining a and b. This visualizaton is in contrast to the traditional Cartesian graph that consolidates the argument and function value visually at a single point (a , b), located at the intersection of lines, X = a and Y = b. Many students in their first calculus course are still developing their basis for understanding the function concept. The combination of transformation figures with Cartesian graphs gives a dual approach to interpreting and visualizing functions that has been particularly helpful for these students. It also is a great aid in making sense of many calculus concepts and results, such as the chain rule and the differential. To make effective use of these visual tools the SCP employs them not merely in one or two instances as some current texts, but regularly invokes them in a variety of contexts [FL1]. This is central to the visually and conceptually balanced approach of the SCP. Differential
Equations, Tangent
Fields, and Euler's Method. The use of tangent (direction)
fields
(see Figure
2 ) to visualize differential equations and Euler's method
for
estimating solutions to initial value problems (see Figure
3 ) are elements of the calculus curriculum that have won general
acceptence
in that past ten years as evidenced by their inclusion the current
Advanced
Placement syllabus and the best selling texts. Professor Flashman
recognized
the importance of these tools for understanding the calculus early in
his
development of The Sensible Calculus Program and has worked over twenty
years with students to find presentations for these tools that are
direct
and easy to follow. As a result of all this experience, The
Sensible
Calculus Book combines an early and extensive discussion of
differential
equations with a visual approach through tangent fields [FL2]
and
a
numerical approach using Euler's method [FL1].
Throughout
the
text the combined numeric and visual approaches complement
conventional symbolic discussions in topics such as solving indefinite
integrals, motivating the definite integral and the Fundamental Theorem
of Calculus, finding precise function solutions to initial value
problems,
and even more advanced symbolic techniques such as the separating
variables.
Models: Connecting applications of the calculus to the real world is not new. For centuries the calculus has been used to understand and plan in science and engineering. In traditional calculus texts, geometric and physical applications appear as motivation primarily for the calculus concept of the derivative. Otherwise applications usually appear only after a technique or concept has been presented. The Sensible Calculus Book presents applications as a part of the modeling process in many contexts, both traditional and more contemporary, especially in economics and continuous probability. These contexts a threaded throughout the text, from the initial chapters on functions and the motivation of the derivative, to the first sections on differential equations and the introduction of both the indefinite and definite integrals, to the understanding of applications of the definite integral and the use of Taylor theory and concepts of infinite series. Frequently a model is presented for motivation and exploration before the calculus concept or technique as in the treatment of transcendental functions with differential equations. For example, a heuristic model for learning introduces a differential equation context. The basic premise is that the rate of learning is often a positive yet decreasing function of time, for instance i) L'(t) = 1/t with t > 0 or ii)L'(t) = 1/[t^{2} + 1] . For the first equation, after a consideration of units and time scales, the boundary condition L(1) = 0 is established. Questions such as what will be the short and long run behavior of the learning function are investigated using tangent fields and Euler's method, as well as the derivative form of the Fundamental Theorem of Calculus. All this leads to a treatment of the natural logarithm function in the context of a differential equations model for learning. Likewise population (exponential growth and predator-prey) models motivate the exponential and trigonometric functions. All of these functions are treated with their traditional definitions as well. The object of the modeling approach is not to give formal rigorous treatments of these functions, but to show how the common functions arise and/or remain significant because they solve modelling problems expressed with differential equations. Second order differential equations and population models motivate the hyperbolic functions as student investigations. Taylor Theory: Polynomial functions and geometric series have been a part of the calculus since the earliest work of Newon and Leibniz that has developed into what is now described as "Taylor theory." The Sensible Calculus Book approaches Taylor theory as a distinct and important part of calculus, not a mere appendage at the end of a year's course treatment of infinite series. The text's development is based on the unifying themes of differential equations and estimation. The calculus of Taylor polynomials (not series) appears as a tool for approximating difficult definite integrals such as ∫_{0}^{1} e ^{-x^2} dx with a sensible control on the error. Estimating the solution to differential equations such as y'' = -y or y''= y with y(0) = 1 and y'(0) = 1 [ which characterize the cosine and the hyperbolic cosine functions] provides additional motivation for the convergence questions of infinite series. Here again the problems we want to solve are placed in the text before the techniques or theory. Infinite sequences and series analysis discuss Taylor theory examples from the beginning along with the traditional examples of geometric and harmonic series. Historical connections Newton's work in estimating the values of the natural logarithm illustrate how geometric series played a significant role in the showing the power of the early calculus for computation and estimation. Probability: One of the most important applications of the calculus in current science and engineering is its use as a foundation for understanding probability and statistics. The inclusion of a section or two on this application in the best selling texts demonstrates the increased awareness by authors and teachers of the importance of this application. The Sensible Calculus Book does more then include a token section on probability and calculus. It includes continuous probability in the development of concepts of both differential and integral calculus. Starting with a simple experiment of throwing a dart at a unit circle in the background pre-calculus sections, the text develops the distance from where the dart lands to the center of the circle as a random variable for further investigation. Trying to understand the distribution function for this random variable eventually leads to its density function, i.e., its derivative. The text treats probability concepts frequently as interpretations of the calculus. The evaluation form of the Fundamental Theorem of Calculus shows the integral relation of the distribution function to the density function. Other probability concepts, such as the median, mode, and mean are introduced with an appropriate calculus concept. The Sensible Calculus' unique approach to probability follows the philosophies of both the NCTM Standards and the California Framework that call for the exploration of probability concepts as a regularly encountered strand in the fabric of mathematics. Whether a student is planning to be an engineer, a physician, or some kind of scientist, one of the most useful parts of their mathematics training will be probability and statistics. Making probability more relevant throughout the course allows students to see the interaction of calculus with this universal application. It enriches their understanding of both subjects as well as showing the application of continuous mathematics to nondeterministic situations. Technology:
Though the
SCP is not committed to any specific technology, it presumes access to
technology capable of graphing and computation as well as some
programming
features in the event that computation or visual features are not
predesigned
in the technology.The text is not driven by technology, but it does
presume
(through its problem sets) that students and teachers will use
technology
to explore and enhance concepts as well as to solve problems.
Example: Draft of Section on Tangent Fields. Example: Draft of Section on Euler's method . Examples: Draft of Section VI.A connecting differential equations to the exponential function and Section VI.B connecting differential equations to the natural logarithm function. Draft of VI.C connecting the natural logarithm and exponential functions.
Example: Draft of Section IX.A introducing Taylor Theory for e^{x} with applications. Example: Draft of part of Section X.B Series: Some Key Examples.
Detailed Proposed Table of Contents
[FL1] Flashman, Martin. "Computer Assisted Calculus And Themes for A Sensible Calculus," in Calculus and Computers: Toward a Curriculum for the 1990's, The Report of A Conference on Calculus and Computers Held at the University of California at Berkeley, August 24-27, 1989. [UMAP] Flashman, Martin. "A Sensible Calculus.," The UMAP Journal, Vol. 11, No. 2, Summer, 1990, pp. 93-96. [FL2] Flashman, Martin. "Using Computers to Make Integration More Visual with Tangent Fields," appearing in Proceedings of the Second Annual Conference on Technology in Collegiate Mathematics, Teaching and Learning with Technology of November 2-4, 1989, edited by Demana, Waits, and Harvey, Addison-Wesley, 1991. [FL3] Flashman, Martin. "Concepts to Drive Technology," in Proceedings of the Fifth Annual Conference on Technology in Collegiate Mathematics, November 12-15, 1992, edited by Lewis Lum, Addison-Wesley, 1994. [FL4] Flashman, Martin. "Historical Motivation for a Calculus Course: Barrow's Theorem," in Vita Mathematica: Historical Research and Integration with Teaching, edited by Ronald Calinger, MAA Notes, No. 40, 1996. [MAA,1] Committee on the Undergraduate Program in Mathematics, "Recommendations for a general Mathematical sciences program," Mathematical Association of America, Washington,1981. [MAA,2] Douglas, Ron, editor. Toward A Lean And Lively Calculus. MAA Notes, No. 6, 1986. [MAA,3] Steen, Lynn, editor. Calculus for a New Century: A Pump, Not A Filter. MAA Notes, No. 8, 1988. [MAA,4] Tucker, Thomas W., editor. Priming the Calculus Pump: Innovations and Resources. MAA Notes, No. 17, 1990. [MAA,5] Solow, Anita E., editor. Preparing for a New Calculus: Conference Proceedings. MAA Notes, No. 36, 1995. [MAA,6] Tucker, Alan C. and Leitzel, James R.C., editors. Assessing Calculus Reform Efforts: A Report to The Community. MAA Reports, No. 6, 1995. [MAA,7] Roberts, A. Wayne, editor. Calculus: The Dynamics of Change. MAA Notes, No. 36, 1996. [S&J] Swann, Howard
and Johnson,
John. Prof. E. McSquared's Calculus Primer, Janson Publications Inc.,
1989. |