Week |
|
|
|
Friday |
1 | 8/26 Introduction & Review | 8/27 More review.
Differential equations and Direction Fields IV.D |
8/29 Euler's Method IV.E | 8/30 More Euler's Method Discussed |
2 | 9/ 2
No Class. Labor Day. |
9/3 More euler's method and Direction Fields.
Exponential functions y=2x. I.F.2. |
9/5 estimate from (1+1/n)n.
Begin 7.2 and Models for (Population) Growth and Decay: y' = k y; y(0)=1. k = 1. The exponential function.VI.A |
9/6 Applications to graphing. Breath |
3 | 9/9 More on the relation between the DE y'=y with y(0)=1 and
ex.
Start work on logarithms. [ln(b)=a means ea=b.] |
9/10 Quick summary I of exponential function.
The natural logarithm function:I.F.2 |
9/12 y = ln (x) and ln(2)
ln|x| and integration of 1/x. logarithmic differentiation. |
9/13Models for learning.
y' = k / x; y(1)=0. k =1 VI.B 7.3 & 7.4, 7.2* |
4 | 9/16 Integration by parts I
8.1 (w/o ex. 5) |
9/17 Connections: 7.4* VI.C
ln(exp(x)) = x exp(ln(y)) = y |
9/19 The
Big Picture
Begin Arctan.VI.D |
9/20 More on Arctan. |
5 Summary #2 | 9/23 More on Arctan. | 9/24 Integration by parts. II
8.1 and VII.C Separation of variables. |
9/26 10.3 Growth/Decay Models.10.4
Improper Integrals I |
9/27 More on improper integrals Breath |
6 Exam I Self
scheduled 10/2
Covers [8/26,9/28] |
9/30 Numerical Integration.(Linear) | 10/1 Numerical Integration. (quadratic) V.D | 10/3 Numerical Integration. (quadratic) V.D | 10/4The Logistic Model 10.5 |
7 | 10/7 Integration of rational functions I.VII.F | 10/8 Rational functions II. | 10/10 More Rational functions VII.F | 10/11-Darts
Probability density, mean Breath (9.5) |
8 Summary #3 due 10/15 | 10/14 -More darts | 10/15Darts
Probability density, mean |
10/17 One more Meany!?
Rational functions III VII.F . . |
10/18 End Rational Functions Begin Improper Integrals II comparison tests? |
9 | 10/21 Improper Integrals II | 10/22 comparison tests | 10/24 Taylor Theory I.IXA | 10/25 Taylor theory II IXA..
IXB Applications: Definite integrals and DE's. |
10Summary #4 due 10/29 | 10/28 Taylor theory III. IXB MacLaurin Polynomials | 10/29 Taylor theory III. IXB
Taylor Theory for remainder proven! |
10/31IX.C
Taylor Theory derivatives, integrals, and ln(x). |
11/1 NO CLASS! |
11 Exam II self scheduled
11/6
Covers [9/30,11/1] |
11/4 More on finding MacClaurin Polynomials & Taylor theory.IX.D | 11/5 Begin Sequences and series . | 11/7 Geometric sequences
12.1 & X.A Sequence properties. |
11/8 Use of absolute values
Incr&bdd above implies convergent. |
12 | 11/11geometric series
Series Conv. I |
11/12 Geometric and Taylor Series. The divergence test.
Harmonic Series. Series Conv. II |
11/14 12.3 Series Conv. III Positive series & Integral test. | 11/15 Alternating Series [12.5]
Trig Integrals 8.2 I sin&cos |
13 Summary #5 due 11/19 | 11/18
Taylor Series convergence.X.B1_4 Theorem on RnSeries Conv. IV Trig Integrals 8.2 II sec&tan |
11/19 Series Conv. V
Positive comparison test [12.4 ++]? Ratio test for Positive Series X.B5 |
11/21Series Conv.VI Absolute conv. & conditional: The General
ratio test:
Power Series I XI.A |
11/22 L'Hospital's rule I [7.7]
Power Series II (Interval of convergence)XI.A |
14 No Classes
Thanksgiving |
11/25 | 11/26 | 11/28 Thanksgiving | 11/29 |
15 | 12/2 Power Series III (DE's)
L'Hospital II. |
12/3 Conics I Intro to loci-analytic geometry issues.(parabolae, ellipses) | 12/5
L'Hospital III Conics II More on Ellipse and Parabola. |
12/6 Trig substitution (begin- area of circle) I (sin) VII.E |
16 | 12/9
Conics III The hyperbolae Other Inverse Functions (Arcsin) Trig substitution II (tan) |
12/10 The conics IV
Trig Substitution III (sec) |
12/12 Arc Length VIII.B
Taylor Series 12.10 |
12/13 How
Newton used Geometric series to find ln(.9)
Proof Of L'Hospital's Rule? Hyperbolic functions: DE's, Taylor Series, Algebra and Hyperbolas. exp(pi*i) = -1 |
17 Final Examination Self scheduled | 12/16 | 12/17 | 12/19 | 12/20 |
Each week partnerships will submit a response to the "problem/activity of the week." These problems will be special problems distributed in class (and on this web page) or selected starred problems from the assignment lists.
All cooperative problem work will be graded 5 for well done; 4 for OK; 3 for acceptable; or 1 for unacceptable; and will be used together with participation in writing summaries in determining the 80 points allocated for cooperative assignments.
2 Midterm exams | 200 points |
Daily Writing | 30 points |
Homework | 70 points |
Reality Quizzes | 100 points |
Cooperative work | 80 points |
Final exam | 200/300 points |
TOTAL | 680/780 points |
The total points available for the semester is either 680 or 780. Notice that only 400 or 500 of these points are from examinations, so regular participation is essential to forming a good foundation for your grades as well as your learning.
MORE THAN 3 ABSENCES MAY LOWER THE FINAL GRADE FOR POOR ATTENDANCE.
DateDue: | Read: | Do: | |||||||
8-27 | IV.D | Background
Reality Check |
|||||||
8-29 | IV.D | 1-11 odd [parts a and b only] | 23 | 24 | |||||
9-3 | 4.10 | 43 | 45 | 47 | 48 | 51 | 52 | ||
8-30 | 10.2 p 620-624 middle | (i) 2-6 | 9 | 11 | *15 | ||||
9-3 | 10.2 p624-626 | (ii) 21 | 23 | ||||||
8-30 | 3.10 | 7, 21, 33 | |||||||
8-30 | IV.E | 5-9 odd (a&b) | |||||||
9-3 | IV.E | 20 | 21 | 24 | |||||
9-5 | 10.2 | (iii)13 | 14 | 19a | |||||
9-5 | exponential functions
I.F.2 Stewart: pp 416-422 |
||||||||
9-6 | I.F.2 | 3 | 4 | ||||||
9-6&9 | VI.A | ||||||||
9-6 | 7.2 | (i) 29 | 33 | 34 | 37 | 47-51 | |||
9-9 | 7.2 | (ii)57 | 61 | 63 | 53 | ||||
9-9 | 7.2 | (iii) 62 | 70 | 71-77odd | 79 | 80 | 85 | 86 | |
9-9 | 7.3 pp 428-430
(review of logs) |
||||||||
9-10 | 7.3 pp 428-430
(review of logs) |
3-17 odd | 31 | 33 | 35 | 41 | 47 | 59-61 | *78 |
9-10 | VI.A | 9 | 10 | 15 | 16 | ||||
9-10&12 | VI.B. | ||||||||
9-12 | 7.4 pp 435-439 | (i) 3,7,9,13 | 25 | 28 | 8 | 22 | |||
9-16 | *7.2 | ||||||||
9-13 | 7.4 | (ii) 15 | 13 | 35 | 53 (changed 9-12) | ||||
9-13 | (Log diff'n ) | (iii) 45-47 | 52(changed 9-12) | 58 | *64 | ||||
9-16 | (Integration ) | (iv) 65 - 71 odd | 74-76 | 80 | 81 | ||||
9-19 | VI.B | 13 | 14 | ||||||
9-19 | VI.C | ||||||||
9-19 | p468 | 19 | 23 | 33 | 37 | 51 | |||
9-20 | inverse tangent
p472-3 |
||||||||
9-20 | 7.5 | 2a | 3a | 5b | 16 | ||||
9-20 | VI.D |
DateDue | Read: | Do: | ||||||||
9-23 | VI.D | 1-4 | 9-13 | 21 | *(22&23) | |||||
9-23 | 7.5 Examples 9&10 | (i) 25-27 | 34 | 38 | 58 | 59 | ||||
9-24 | (ii) 62 | 64 | 67 | 69 | 70 | 74* | 75* | |||
TBA | (iii) 22 | 23 | 24 | 29 | 20 | 47 | 48 | 63 | 68 | |
9-23-24 | Read VII.C | |||||||||
9-17 | 8.1 (parts) | (i)1-11odd | 29 | 30 | 51 (see page 390). | |||||
9-26 | (ii) 15
[oops: 21 removed 9-26] |
23 | 25 | 33 | 41 | 42 | 45 | 46 | ||
9-26 | 10.3 (sep'n of var's)(i) | (i) 1 | 3 | 4 | 7 | |||||
9-27 | (ii) 9 | 10 | 15 | 29 | ||||||
9-27 | 10.4 pp637-641
(growth/decay models) |
(i) 1-7odd | ||||||||
9-30 | 10.4 pp641-642 | (ii)9-11 | ||||||||
9-30 | 10.4 pp642-643 | (iii) 13 | 14 | 17 | ||||||
10-7 | 10.5 (logistic model) | |||||||||
10-7 | Begin reading VII.F
through Example VII.F.5
(rational functions) |
|||||||||
10-11 (Again) | 10.5 (oops- sorry if you thought this was VII.F) | 1 | 5 | *(11&12) | ||||||
10-1 | 8.7(num'l integr'n) | (i) 1 | 4 | 7a | 11(a&b) | 27 (n=4&8) | 33a | |||
10-4 | (simpson's method) | (ii) 7b | 11c | 31 | 32 | 35 | 36 | *44 | ||
More help on
Simpson's rule,etc can be found in V.D |
||||||||||
9-27 | 8.8 (improper integrals) Type I only[omit ex. 2] | |||||||||
9-30 | 8.8 type I | (i)3 | 5 | 7 | 8 | 9 | ||||
9-30/ 10-1 | (ii)13 | 21 | 41 | |||||||
10-22 | 8.8 type II | (iii) 27-30 | 33 | 34 | 37 | 38 | ||||
10-24 | 8.8 comparison | (iv) 49 | 51 | 55 | *60 | 61 | 57 | 71 | ||
10-24 | IXA |
DueDate | Read: | Do: | ||||||||
10-8 | Begin VII.F
(rational functions) |
|||||||||
10-8 | 8.4 | (i) 13 | 14 | 29 | ||||||
10-10 | 8.4 | (ii) 15 | 16 | 17 | 20 | 21 | ||||
10-11 (new) | VII.F | 5 | 6 | 7 | 17 | |||||
10-11 | 10.5 (Again) | 1 | 5 | |||||||
10-14 | 8.4 | (iii) 62 | 63 | 65 | ||||||
10-18 | 8.4 | (iv) 31 | 35 | 36 | 25 | |||||
10-10/11 | Darts | |||||||||
10-14&15 | 9.5 pp 603-607
andDarts |
|||||||||
10-17 | 9.5 pp 603-607
andDarts |
1,3,4,5 | ||||||||
10-21 | VII.F
on-line
check work on-line with Mathematica |
1 | 3 | 7 | 10 | 14 | 15 | |||
10-21 | read 8.8 type II and comparison | |||||||||
10-25 | IXA | 1 | 2 | |||||||
10-28 | IXA | 3, 4 | 6 | 8 | 9 | *10 | ||||
10-25&28 | Read IX B | |||||||||
10-29 | IXB | (i)1 | 2 | 4 | 5 | 7 | ||||
10-31 | IXB | (ii) | 11 | 13 | 14 | *23 | ||||
10-31 | IX.C | |||||||||
11-4 | IX.C | (i) 1-4 | ||||||||
11-4 | IX.C | (ii) 5-9 | ||||||||
11-4 | IX.C | (iii) 12 | 14 | 16-18 | ||||||
11-4 | IX.D | |||||||||
11-5 | IX.D | 1 | 3 | 5 | ||||||
11-5 | IX.D | 8 | 10 | 14 | 15 | |||||
11-7 | X.A | |||||||||
11-8 | X.A | 1-3 | 5 | 7-9 | ||||||
11-8 | 12.1 pp 727-729;
examples 5-8 (sequences converge) |
(i) 3-23 odd | ||||||||
11-11 | 12.1 | (ii)39-43 odd | 51, 53-57 | 61 | *63 | *64 | ||||
11-11 | 12.2 pp 738 -741
(series- geometric series) |
|||||||||
11-12 | 12.2 pp 738 -741
(series- geometric series) |
3 | 5 | 7 | 8 | |||||
11-12And 14 | X.B1_4 | |||||||||
11-14 | 12.2
(series- geometric series): |
(i) 3 | 11-15 | *51 | ||||||
11-15 | 12.2 (geometric, etc) | (ii)41-45 | 49 | 50 | 51 | |||||
11-15 | 12.2 READ!!pp 742-745 | (iii) 21-31odd | ||||||||
11-15 | 12.3 | (i) 1 | 3-6 | |||||||
11-18 | 12.3 | (ii) 9-15 odd | ||||||||
11-18 | X.B1_4 | |||||||||
11-18 | 12.5 | (i) 2-5; 23 | 25 | 31 | ||||||
11-19 | 12.5 | (ii) 9-15 odd | ||||||||
11-18 | 8.2 (trig integrals) | (i)1-5 | 7-15 odd | |||||||
11-19 | 8.2 More Trig Integrals | (ii) 21-25 odd | 33 | 34 | 45 | 44 | 57 | *59 | *60 | *61 |
11-21 | 12.4 (comparison test) | (i) 3-7 | ||||||||
11-22 | (ii) 9-17 odd | |||||||||
11-21 | X.B5 Ratio Test For Positive Series | |||||||||
11-21 | 12.6 Use the ratio test for positive
series
to test for convergence. |
2 | 17 | 23 | 20 | 29 | *34 | |||
11-22 | 7.7 p487 Note 3 (L'H) | |||||||||
11-22 | 12.6 | 3-9 odd | 19 | *(31&32) | 33 | 35 | ||||
12-2 | 7.7 | (i) 5-11 odd | ||||||||
12-2 | 7.7 examples 1-5 | (ii) 21 | 27 | 29 | 15 | 23 | 18 | 33 | ||
12-3 | 7.7 examples 6-8 | (iii) 39-43 odd | 47-51 odd | |||||||
12-6 | 7.7 examples 9-10 | (iv) | 55 | 57 | 63 | *96 | *97 | |||
12-2 | XI.A and 12.8 | 3-11 odd | ||||||||
12-3 | 12.9 read Ex 1-3,5-8 | |||||||||
12-5 | 12.9 | (i)3-9 odd | 25 | 29 | 34 | *39 | ||||
12-5 | 11.6 : pp 709-10 (thru ex.3) | |||||||||
12-6 | 11.6 : pp 709-10 (thru ex.3) | (i) 1-7 odd | 27 | 29 | ||||||
12-6 | 12.9 | (ii) 13 | 14 | 21 | 27 | |||||
12-6 | 8.3 (trig subs)
(i) pp 517-519 middle |
|||||||||
12-9 | 8.3 (i)
VII.E |
2 | 4 | 7 | 11 | |||||
12-10 | 8.3 (ii) pp 519-520 | 3 | 6 | 19 | 9 | |||||
12-12 | 8.3 (iii) pp 521-522 | 1 | 5 | 21 | 23 | 27 | 29 | |||
12-10 | 7.5 pp469-473 | 23 | 61 | |||||||
12-12 | Ch 8 review problems p568 | 1-11 odd | 33 | 35 |
Date Due | Read: | Do: | |||||
12-3 | 11.6: pp709-11 | ||||||
12-9 | 11.6: pp 711-12 | (ii) 11-14 | 31 | 33 | |||
12-10 | 11.6 | (iii) 19-22 | 37 | 39 | 47 | *50 | |
12-10 | 12.10 Read only pp785-792 | ||||||
12-10 | 12.7 Review of convergence tests | 1-11 odd | |||||
12-12 | Read 12.11 | ||||||
12-12 | 12.10 | 31 | 35 | 56 | 41 | 57 | 58 |
12-12 | 9.1 through p 578 | ||||||
12-13 | 9.1 | 1 | 3 | 19 | 21 | ||
9.2 | 5 | 7 | 9 | ||||
9.5 | 1 | 3 | 7* |
The Transcendental Functions.
The Natural Exponential Function. Basic Properties The Natural Logarithm Function. L(t) = ò1t 1/x dx: Basic properties of L(t) = ln(t) = LOG(t) . "inverse" relation between ln and exp. Applications of LN . --Logarithmic Differentiation. --Functions with exponents: a summary. The Trigonometric Functions. The Inverse Trigonometric Functions and Their Derivatives. The Trigonometric Functions and Their Derivatives. Integration of Trigonometric Functions and Elementary Formulas. Differential Equations and Integration Tangent Fields and Integral Curves. Numerical Approximations. Euler's Method. Midpoints. Trapezoidal Rule. Parabolic (Simpson's) Rule. Integration by Parts. Integration of Trigonometric Functions. Trigonometric Substitutions. Integration of Rational Functions. Simple examples. Simple Partial fractions. Separation of Variables. Applications: Probability: distributions, density, mean
L'Hopital's Rule: 0/0 inf/inf inf - inf 0*inf 0^ 0 1^inf |
Taylor's Theorem.
Taylor Polynomials. Calculus. Using Taylor Polynomials to Approximate: Error Estimation. Derivative form of the remainder. Approximating known functions, integrals Approximating solutions to diff'l equations using Taylor's theorem. Sequences and Series: Fundamental Properties.
Power Series: Polynomials and Series.
Analytic Geometry, the Conic Sections
|
Back to Martin Flashman's Home Page :)