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E Trigonometric Substitutions.

E.1 The Area of a Circle.

The area of a circle of radius 1 (the unit circle) is well-known to
be π. We will investigate this with several different approaches,
each illuminating a particular aspect of the calculus. Remember
that the unit circle is described by the equation

x2 + y2 = 1.

We’ll begin by finding the area of the region contained in the
quarter circle between the circle, the X-axis, and the Y-axis.
This area can be found using a Riemann integral, namely:∫ 1

0

√
1− x2 dx.

We’ll first show that this integral is π/4 using a few elemen-
tary ideas and a convergent improper integral. After this rather
tricky approach we’ll examine the same problem from a more el-
ementary point of view. From this we’ll develop another integral
that finds the area of the circle , leading us to a sometimes useful
method of integration based on a substitution of trigonometric
functions .

Theorem 1. ∫ 1

0

√
1− x2 dx = π/4.

Proof: The key idea is to make a substitution, u =
√

1− x2

so u2 = 1− x2 and 2u du = −2x dx. When x = 0 , u = 1,
while when x = 1 , u = 0. After the substitution we have
an improper integral. (We’ll ignore this difficulty for now and
continue assuming that the integral converges.) Thus∫ 1

0

√
1− x2 dx = −

∫ 0

1

u2

√
1− u2

du
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Now we can change the order of integration of this last integral
and rename the variable u to x to obtain∫ 1

0

√
1− x2 dx =

∫ 1

0

x2

√
1− x2

dx.

Combining these integrals and placing the integrand over the
common denominator of

√
1− x2 gives∫ 1

0

1− 2x2

√
1− x2

dx = 0.

But now we have

2
∫ 1

0

x2

√
1− x2

dx =
∫ 1

0

1√
1− x2

dx = arcsin(1) = π/2.

Thus we have finally that∫ 1

0

√
1− x2 dx =

∫ 1

0

x2

√
1− x2

dx = π/4.

EOP

Comments: You should check that in these calculations the
improper integrals that appeared were all used properly! You
should now be able to show that the area of a circle with radius r
is π r2 . In this way we see something that was known as far back
in history as the Greek mathematician Archimedes. Namely
that the area of any circle is equal to the area of a right triangle
in which one side adjacent to the right angle is the radius of the
circle and the other side is the circumference of the circle.

E.2 Another Definite Integral That Finds the Area of the Cir-
cle.

We have seen that the area of one quarter of the unit circle is
expressed as ∫ 1

0

√
1− x2 dx = π/4.
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To estimate this integral we could partition the interval [0,1]
with n+1 points, xk = k/n, where k = 0 to n. The Euler sum
estimate would be

n−1∑
k=0

√
1− x2

k ∆xk

where ∆xk = 1/n. Examining the points on the unit circle
that corresponds to this partition, namely (xk, yk) where yk =√

1− x2
k we let tk be the angle measured in radians from the

point (1,0) on the unit circle so that xk = cos(tk) and yk =√
1− x2

k = sin(tk) . Using differentials we have that when x =

cos(t), dx = sin(t) dt. Notice that when x = 0, t = π/2
while when x = 1, t = 0.

If we replace all the x’s in the Euler sum with the appropriate
term using the angles tk we arrive at the following sum:

n−1∑
k=0

sin(tk) · −sin(tk) ∆tk .

But when you analyze this sum carefully, it should become clear
that it is a Reimann sum for the following integral:∫ 0

π/2
−sin2(t) dt .

After a change in sign that goes with changing the order of the
limits of integration for this integral we have that the area of
one fourth the unit circle can be found by evaluation of∫ π/2

0
sin2(t) dt .

Using the methods discussed in the section on trigonometric
integrals or integration by parts, you can show that this integral
is π/4.

Comments. We could use the method we established here to
again find the area of a circle of radius r, but we leave that for
you as an exercise.

It is not so surprising to find π in this answer since it involved
in the limits of the integral, arising as the value of t for which
cos(t) = 0.
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E.3

Trigonometric Substitutions Using the Sine Function.
Although the last work on the area of the circle suggests a

method of substitution in an integral involving
√

1− x2 in the
integrand, it was a little awkward to follow through on this be-
cause of the reversal of signs in both the differential and the
order of integration of the definite integral. For this reason the
method used to simplify these kinds of integrals uses the substi-
tution that x = sin(θ) with the result that dx = cos(θ) dθ .
This substitution is fairly straight forward in both indefinite and
definite integrals.

In particular, the expression
√

1− x2 =
√

1− sin2(θ) =√
cos2(θ) = cos(θ).

Example VII.E.1 Find
∫ √

1− x2 dx using the trigonometric
substitution x = sin(θ).

Solution. Let x = sin(θ) so dx = cos(θ) dθ. Continuing we
have

∫ √
1− x2 dx =

∫
cos(θ) cos(θ) dθ =

∫
cos2(θ) dθ.

From our previous work on trigonometric integrals this last
integral can be shown to be 1/2 [sin(θ) cos(θ)+ θ] + C. But our
problem was originally posed in terms of x so we must express
our answer in terms of x. This is easy for sin(θ)̄ = x and with
a little more reflection on how this substitution worked it must
be that cos(θ) =

√
1− x2 while θ itself must be the arcsin(x).

Putting this all together we see that

∫ √
1− x2 dx = 1/2 [x

√
1− x2 + arcsin(x) ] + C.

Comment. Using the last example we apply the Fundamental
Theorem of Calculus to evaluate our now familiar integral for
the area of the quarter unit circle to find once again that
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∫ √
1− x2 dx =

1

2
[x
√

1− x2 + arcsin(x) ]|10

=
1

2
arcsin(1) = π/4.

Here are two more examples of how the sine function can
be used in a substitution to convert an algebraic integral to a
trigonometric integration problem.

Example VII.E.2. Find
∫ √

9− x2 dx.
Solution. Our first question is what to use for x in this in-

tegral that will eliminate the expression
√

9− x2 after the sub-
stitution is accomplished. From the last example we see that
the key trionometric identity for this problem is 1 − sin2(θ) =
cos2(θ) but in our problem we have to work with the expression
9 − x2. So we want 9 − x2 = k( 1 − sin2(θ) ) for some value
of k. It is not too hard to see from this that k = 9 so that
x2 = 9 sin2(θ) and therefore the sensible choice for this problem
is to use the trigonometric substitution x = 3 sin(θ). Then
dx = 3 cos(θ) dθ.

Continuing we have∫ √
9− x2 dx =

∫
3 cos(θ) 3 cos(θ) dθ =

∫
9 cos2(θ) dθ.

From our previous work on trigonometric integrals or integration
by parts, this last integral can be shown to be 9 1

2
[sin(θ) cos(θ) +

θ] + C. But our problem was originally posed in terms of x
so as usual we must express our answer in terms of x. This is
easy for sin(θ) = x/3 and with a little more reflection on how

this substitution worked it must be that cos(θ) =
√

9−x2

3
while

θ itself must be the arcsin(x/3). Putting this all together we see
that∫ √

9− x2 dx = 9/2 [
x
√

9− x2

9
+ arcsin(x/3) ] + C.
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=
x
√

9− x2

2
+

9

2
arcsin(x/3) + C.

In the next example we’ll see how a quadratic expression in
x involved with a square root can also lead to a substitution
involving the sine function.

Example VII.E.3. Find a trigonometric substitution for
∫√

5 + 4x− x2

dx that will eliminate the square root in the intregral after the
substitution is made.

Remark. From our previous work on trigonometric integrals
and/or integration by parts this last integration is not difficult.
As usual we would still need to express our answer in terms of
x. This is fairly direct since sin(θ) = x−2

3
and with a little

more reflection on how this substitution worked it must be that
cos(θ) =

√
5+4x−x2

3
while θ itself must be the arcsin(x−2

3
). You

may complete the details of the work now to find the integral in
terms of x in the last example.

E.4
Trigonometric Substitutions Using the Tangent and Se-
cant Functions.

Example VII.E.4 Find
∫ 1

x
√
x2−1

dx using the trigonometric sub-

stitution x = sec(θ).
Remark. You might check this result by reviewing the meth-

ods we considered for finding the derivative of inverse (trigono-
metric) functions.

Example VII.E.5 Find
∫ 1√

1+x2 dx using the trigonometric

substitution x = tan(θ).
Solution. Let x = tan(θ) so dx = sec2(θ) dθ. Continuing

we have∫ 1√
1 + x2

dx =
∫ sec2(θ)

sec(θ)
dθ =

∫
sec(θ) dθ = ln(| sec(θ)+tan(θ)|)+C.

∫ 1√
1 + x2

dx = ln(|
√

1 + x2 + x|) + C.
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Comments.1.This last example illustrates a rather interesting
feature of this method of substitution. Neither the integrand nor
the solution to the problem involve any explicit use of trigno-
metric functions, while the method we used to find this result
relied heavily on trigonometry. There is a result in logic (and
philosophy) that says that if a problem and it’s solution do not
involve a particular concept, then there is a way to arrive at
that solution using only concepts contained already in the prob-
lem and it’s solution. This result is called “Craig’s Lemma”. In
this example the implication of this result is that there should
be a demonstration of the truth of this solution that does not
requiretrigonometry. Of course this is true, since to check the
integral is correct here you need only differentiate and in that
work you will not use any trigonometry.

We need to express our answer in terms of
2. If we consider the learning model with L′(t) = 1/

√
t2 + 1

and L(1) = 0 as usual, the last integration shows that this is
another example of unbounded learning . See the exercises for
applications of these integrals to other models.

E.5 Exercises.

Evaluate the following integrals as appropriate:
31-40. For each of the integrals in exercises 1 to 10 sketch a

tangent field for the appropriate differential equation. Discuss
briefly the domain of the solution and sketch two integral curves
on your sketch.

41. Suppose a population P grows so that P ′(t) =
√

1 + t2

with P (0) = 1. Estimate P (1) using Euler’s method with n = 4,
n = 10, and n = 100. Find a solution to this differential equation
and estimate the population when t = 10 and t = 100.


