DateDue:  Read:  Do:  
829  IV.D  Background
Reality Check 

831  IV.D  111 odd [parts a and b only]  23  24  
831  4.10  43  45  47  48  51  52  
95  10.2  (i) 26  9  11  *15  
97  (ii) 21  23  
95  IV.E  59 odd (a&b)  20  21  24  
97  exponential functions
I.F.2 Stewart: pp 416422 

910/12?  I.F.2
pp 428430 (review of logs) 

910  I.F.2  3  4  
910  VI.A  
910  7.2  (i) 29  33  34  37  4751  57  61  63  53 
912  (ii) 62  70  7177odd  79  80  85  86  
912  7.3 Review of logs  317 odd  31  33  35  41  47  5961  *78  
914  VI.B.  
914  7.4  (i) 3,7,9,13  25  28  8  22  
*7.2  
917  7.4  (ii) 15  13  35  52  
917  (Log diff'n )  (iii) 4547  53  58  *64  
917  (Integration )  (iv) 65  71 odd  
919  VI.B  13  14  
919  VI.C  
919  p468  19  23  33  37  51  
921  inverse tangent
p4723 

921  7.5  2a  3a  5b  16 
DateDue  Read:  Do:  
921  VI.D  14  913  21  *(22&23)  
921  7.5  (i) 2527  34  38  58  
(ii) 59  62  64  67  69  70  74*  75*  
(iii) 22  23  24  29  20  47  48  63  68  
924  Read VII.C  
924  8.1 (parts)  (i)111odd  33  51  54  
926  (ii) 15, 21  23  25  29  30  41  42  45  46  
926  10.3(sep'n of var's)(i)  (i) 1  3  4  7  
928  (ii) 9  10  15  
101  10.4
(growth/decay models) 
(i) 17odd  
101  (ii)911  
103  (iii) 13  14  17  
108  10.5 (logistic model)  1  5  *(11&12)  
103  8.7(num'l integr'n)  (i) 1  4  7a  11(a&b)  27 (n=4&8)  33a  
108  (simpson's method)  (ii) 7b  11c  31  32  35  36  *44  
108  More help on
Simpson's rule,etc can be found in V.D 

928  8.8 (improper integrals)  (i)3  5  7  8  9  13  21  41  
1015  finish reading 8.8  
1017  (ii) 2730  33  34  37  38  
1019  (iii) 49  51  55  *60  61  57  71 
DueDate  Read:  Do:  
10/10  BeginVII.F
(rational functions) 

10/10  8.4  (i) 13  14  29  
10/10  (ii) 15  16  17  20  21  
10/12  (iii) 31  35  36  62  25  
10/10&12  Darts  
10/17  9.5 pp 603607
andDarts 
1,3,4,5  
TBA  VII.F  1  3  7  10  14  15  
10/15&17&19  IXA  
10/22  IXA  13  
10/22  IXA  4  6  8  9  *10  
10/22  Read IX B  
10/24  IXB  (i)1  2  4  5  7  
10/26  (ii)  11  13  14  *23  
10/26  IX.C  (i) 15  
10/29  IX.C  (ii) 69  
10/29  IX.C  (iii) 12  14  1618  
10/31  IX.D  1  3  5  8  10  14  15  
11/2  12.1 pp 727729;
examples 58 (sequences converge) 

10/31  X.A  
11/2  X.A  13  5  79  
11/5  12.1  (i) 323 odd  3943 odd  
11/5  (ii)51  5357  61  *63  *64  
11/5  12.2 pp 738 741
(series geometric series) 

11/7  12.2
(series geometric series): 
(i) 3  1115  3537  *51  
11/9  X.B1_4  
11/9  12.2 (geometric, etc)  (ii)4145  49  50  51  
11/12  12.2 pp 742745  (iii) 2131odd  
11/14  12.3  (i) 1  37  
(ii) 915 odd  
X.B1_4  
11/12  8.2 (trig integrals)  (i)15  715 odd  
11/14  (ii) 2125 odd  33  34  45  44  57  *59  *60  *61  
11/28  8.3 (trig subs)
pp 517519 middle 

11/28  (i) pp 517519 middle  2  4  7  11  
11/30  (ii) pp 519520 
3 
6  19  9  
12/3  (iii) pp 521522  1  5  21  23  27  29  
Ch 8 review problems  111 odd  33  35 
Date Due  Read:  Do:  
11/16  7.7 p 487 note 3  (i) 511 odd  
11/16  examples 15  (ii)21  27  29  15  23  18  33 
11/16  examples 68  (iii) 3943 odd  4751 odd  
11/28 







12/5  11.6: pp70911 (thru ex.3)  
12/7 



29  
12/7  pp 71112  (ii) 1114  31  33  
12/10  (iii) 1922  37  39  47  *50  
11/28  12.4 (comparison test)  (i) 37  
11/30  (ii) 917 odd  
11/28  12.5  
11/30  (i) 25; 23  25  31  
12/3  (ii) 915 odd  
11/30  12.6 Use the ratio test
to test for convergence. 
2  17  23  20  29  *34  
12/3  12.6  39 odd  19  *(31&32)  33  35  
11/30  X.B5  
12/5  12.5  311 odd  21  23  27  *35  
12/5  12.7  111 odd  
12/5  XI.A  
12/10  12.8  311 odd  
12/12  12.9  39 odd  25  29  
12/12 Read Only  12.10  31  35  56  41  45  57  58 
9.1 though p 578  
12/12  9.1  1  3  19  21  
9.2  5  7  9  
9.5  1  3  7* 
Week 



1  8/27 Introduction & Review  8/29 More review.
Differential equations and Direction Fields IV.D 
8/31 Euler's Method IV.E 
2  9/3
No Class. Labor Day. 
9/5 More euler's method Exponential functions y=2^{x}. I.F.2.  9/7e estimate from (1+1/n)^{n}.
Begin 7.2 and Models for (Population) Growth and Decay: y' = k y; y(0)=1. k = 1. The exponential function.VI.A Applications to graphing. 
3  9/10More on the relation between the DE y'=y with y(0)=1 and
e^{x}.
The natural logarithm function.I.F.2 y = ln (x) and ln(2) Models for learning. y' = k / x; y(1)=0. k =1 
9/12 VI.B
7.3 & 7.4, 7.2* 
9/14 Connections: 7.4* VI.C
logarithmic differentiation. 
4  9/17 ln(exp(x)) = x
exp(ln(y)) = y 
9/19 The
Big Picture
Arctan.VI.D 
9/21 More on Arctan.
Integration by parts. 8.1 and VII.C 
5  9/24 Parts with Definite Integrals. Separation of variables. 10.3  9/26 Growth/Decay Models.10.4
Improper Integrals I 
9/28 More on improper integrals 
6 Exam I
Covers [8/28,9/28] 
10/1 Numerical Integration.(Linear) 
10/3Numerical Integration. (quadratic) V.D
The Logistic Model 10.5 
10/5 Examination #1
[8/27, 9/28] 
7  10/8Integration of rational functions I.VII.F  10/10 probability densityDarts
Rational functions II. VII.F 
10/12
More Darts Probability density, mean 
8  10/15 Rational functions III VII.F
Improper Integrals II 
10/17
Improper Integrals III comparison tests. 
10/19 Taylor Theory I. IXA
Applications: Definite integrals and DE's.IXA . 
9  10/22Taylor theory II.IXB  10/24 Taylor theory III. IXB & IX.C  10/26
Taylor Theory derivatives, integrals, and ln(x). 
10  10/29 Taylor theory.IX.D  10/31Begin Sequences and series
12.1 & X.A 
11/2 Geometric sequences
Sequence properties. Use of absolute values. Incr&bdd above implies convergent. 
11 Exam II
Covers [10/2,11/2] 
11/5 How
Newton used Geometric series to find ln(.9) geometric series Series Conv. I 
11/7 Examination #2
[10/2, 11/2]. 
11/9 Trig Integrals 8.2
I sin&cos Geometric and Taylor Series. Series Conv. II The divergence test. Harmonic Series. 
12  11/12 Trig Integrals 8.2 II sec&tan
Series Conv. III 12.3 Positive series & Integral test. Taylor Series convergence.X.B1_4 Prove Theorem on R_{n?} 
11/14 L'Hospital's rule I [7.7]  11/16
L'Hospital II. 
13 No Classes
Thanksgiving 
11/19  11/21  11/23 Thanksgiving 
14  11/26 Series Conv. IV
Positive comparison test [12.4 ++] Begin Alternating Series [12.5] Trig substitution (begin area of circle) I (sin) 
11/28 Series Conv. V Misc & ratio test intro.
Trig substitution II (tan) 
11/30 Trig Substitution III (sec)
Other Inverse Functions (Arcsin) Series Conv.VI Absolute conv. & conditional Convergence 
15  12/3 Power Series I General ratio test:
(Using the ratio test  convergence) XI.A Conics I Intro to locianalytic geometry issues. Conics II(parabolae, ellipses) 
12/5 Power Series II (Interval of convergence)XI.A
(Calculus) Conics III hyperbolae 
12/7 Breath
Power Series III (DE's) 
16  12/10 Arc Length VIII.B
Taylor Series 12.10 
12/12 More on 12.10
Proof Of L'Hospital's Rule? 
12/14 int(exp(x^2),x)) 
17 Final Examinations  12/17  12/19  12/21 
The Transcendental Functions.
The Natural Exponential Function. Basic Properties The Natural Logarithm Function. L(t) = ò_{1}^{t }1/x dx: Basic properties of L(t) = ln(t) = LOG(t) . "inverse" relation between L and exp. Applications of LN . Logarithmic Differentiation. Functions with exponents: a summary. The Trigonometric Functions. The Inverse Trigonometric Functions and Their Derivatives. The Trigonometric Functions and Their Derivatives. Integration of Trigonometric Functions and Elementary Formulas. Integration , Tangent Fields, and Integral Curves. Numerical Approximations. Euler's Method. Midpoints. Trapezoidal Rule. Parabolic (Simpson's) Rule. Integration by Parts.
Applications: Probability: distributions, density, mean
L'Hopital's Rule: 0/0 inf/inf inf  inf 0*inf 0^ 0 1^inf 
Taylor's Theorem.
Taylor Polynomials. Calculus. Using Taylor Polynomials to Approximate: Error Estimation. Derivative form of the remainder. Approximating known functions, integrals Approximating solutions to diff'l equations using Taylor's theorem. Sequences and Series: Fundamental Properties.
Power Series: Polynomials and Series.
Analytic Geometry, the Conic Sections

Back to Martin Flashman's Home Page
:)
Back
to HSU Math. Department :}
Each week partnerships will submit a response to the "problem/activity of the week." These problems will be special problems distributed in class (and on this web page) or selected starred problems from the assignment lists.
All cooperative problem work will be graded 5 for well done; 4 for OK; 3 for acceptable; or 1 for unacceptable; and will be used together with participation in writing summaries in determining the 80 points allocated for cooperative assignments.
2 Midterm exams  200 points 
Daily Writing  30 points 
Homework  70 points 
Reality Quizzes  100 points 
Cooperative work  80 points 
Final exam  200/300 points 
TOTAL  680/780 points 
The total points available for the semester is either 680 or 780. Notice that only 400 or 500 of these points are from examinations, so regular participation is essential to forming a good foundation for your grades as well as your learning.
MORE THAN 3 ABSENCES MAY LOWER THE FINAL GRADE FOR POOR ATTENDANCE.
Back to HSU Math. Department :}