I  II  III  IV 
DateDue:  Read:  Do:  
829  Background
Reality Check 

830  IV.D  111 odd  23  24  
830  4.10  43  45  47  48  51  52  
831  10.2  (i) 26  9  11  *15  
95  (ii) 21  23  
95  IV.E  59 odd (a&b)  20  21  24  
96  pp 416422
exponential functions 

96  I.F.2
pp 428430 (review of logs) 

97  I.F.2  3  4  
97&11  VI.A  
97  7.2  (i) 29  33  34  37  4751  57  61  63  53 
911  (ii) 62  70  7177odd  79  80  85  86  
911  7.3 Review of logs  317 odd  31  33  35  41  47  5961  *78  
912  VI.B.  
913  7.4  (i) 3,7,9,13  25  28  8  22  
914  *7.2  
914  7.4  (ii) 15  13  35  52  
918  (Log diff'n )  (iii) 4547  53  58  *64  
918  (Integration )  (iv) 65  71 odd  
914  VI.B  13  14  
914  VI.C  
919  p468  19  23  33  37  51  
919  inverse tangent
p4723 

919  7.5  2a  3a  5b  16 
DateDue  Read:  Do:  
920  VI.D  14  913  21  *(22&23)  
920  7.5  (i) 2527  34  38  *58  
(ii) 59  62  64  67  69  70  74*  75*  
(iii) 22  23  24  29  20  47  48  63  68  
921  Read VII.C  
921  8.1 (parts)  (i)111odd  33  51  54  
925  (ii) 15, 21  23  25  29  30  41  42  45  46  
925  10.3(sep'n of var's)  1  3  4  7  9  10  15  
926  10.4
(growth/decay models) 
(i) 17odd  
927  (ii)911  
928  (iii) 13  14  17  
927  10.5 (logistic model)  1  5  *(11&12)  
102  8.7(num'l integr'n)  (i) 1  4  7a  11(a&b)  27 (n=4&8)  33a  
1011  (simpson's method)  (ii) 7b  11c  31  32  35  36  *44  
1011  More help on
Simpson's rule,etc can be found in V.D 

928  8.8 (improper integrals)  (i)3  5  7  8  9  13  21  41  
1010  (ii) 2730  33  34  37  38  
1011  (iii) 49  51  55  *60  61  57  71 
DueDate  Read:  Do:  
10/5  BeginVII.F
(rational functions) 

10/4  8.4  (i) 13  14  29  
10/4  (ii) 15  16  17  20  21  
10/5  (iii) 31  35  36  62  25  
10/9  Handout on x ln(x).  
10/10  VII.F  1  3  7  10  14  15  
10/12  IXA  
10/16  IXA  13  
10/17  IXA  4  6  8  9  *10  
10/17  Read IX B  
10/18  IXB  (i)1  2  4  5  7  
10/19  (ii)  11  13  14  *23  
10/23  IX.C  (i) 15  
10/23  IX.C  (ii) 69  
10/24  IX.C  (iii) 12  14  1618  
10/25  IX.D  1  3  5  8  10  14  15  
10/26  12.1 pp 727729;
examples 58 (sequences converge) 

10/26  X.A  
10/30  X.A  13  5  79  
10/30  12.1  (i) 323 odd  
10/31  (ii) 3943 odd  51  5357  61  *63  *64  
10/.31  12.2 pp 738 741
(series geometric series) 

11/1  12.2
(series geometric series): 
(i) 3  1115  3537  *51  
11/1  X.B1_4  
11/2  12.2 (geometric, etc)  (ii)4145  49  50  51  
11/7  12.2 pp 742745  (iii) 2131odd  
11/14  12.3  (i) 1  37  
11/14  (ii) 915 odd  
11/9  X.B1_4  
11/2  8.2 (trig integrals)  (i)15  715 odd  
11/6  (ii) 2125 odd  33  34  45  44  57  *59  *60  *61  
11/13  9.5 pp 603607
andDarts 
1,3,4,5  
11/28  8.3 (trig subs)
pp 517519 middle 

11/29  (i) pp 517519 middle  2  4  7  11  
11/30  (ii) pp 519520 
3 
6  19  9  
12/4  (iii) pp 521522  1  5  21  23  27  29  
12/11?  Ch 8 review problems  111 odd  33  35 
Date Due  Read:  Do:  
11/27  7.7 p 487 note 3  (i) 511 odd  
11/27  examples 15  (ii)21  27  29  15  23  18  33 
11/28  examples 68  (iii) 3943 odd  4751 odd  
12/5 







12/5  11.6: pp70911 (thru ex.3)  
12/6 



29  
12/6  pp 71112  (ii) 1114  31  33  
12/7  (iii) 1922  37  39  47  *50  
12.4 (comparison test)  (i) 37  
(ii) 917 odd  
11/16  12.5  (i) 25; 23  25  31  
11/27  (ii) 915 odd  
11/15  12.6 Use the ratio test
to test for convergence. 
2  17  23  20  29  *34  
11/29  12.6  
11/30  12.6  39 odd  19  *(31&32)  33  35  
X.B5  
12.5  311 odd  21  23  27  *35  
12.7  111 odd  
12/4  XI.A  
12/4  12.8  311 odd  
12/11  12.9  39 odd  25  29  
12/13  12.10  31  35  56  41  45  57  58 
12/11  9.1 though p 578  
12/12  9.1  1  3  19  21  
9.2  5  7  9  
9.5  1  3  7* 
CALENDAR SCHEDULE
(Subject to change)
Week  Mon.  Tues.  Wed.  Thurs. 
1  8/28 Introduction & Review  8/29 Differential equations and Direction Fields IV.D
[Demos from BradleySmith 1. 2] 
8/30 More on Direction Fields  8/31 Euler's Method IV.E 
2  9/4
No Class. Labor Day. 
9/5 Exponential functions y=2^{x}. I.F.2;
begin 7.2.
e estimate from (1+1/n)^{n} . 
9/6 More on models for (Population) Growth and Decay:
y' = k y; y(0)=1. k = 1. 
9/7 The exponential function.VI.A 
3  9/11Applications to graphing. More on the relation between the DE y'=y with y(0)=1 and e^{x}.  9/12 The natural logarithm function.I.F.2
y = ln (x) and ln(2) Models for learning. y' = k / x; y(1)=0. k =1 
9/13 VI.B
7.3 & 7.4, 7.2* 
9/14 Connections: 7.4* VI.C
ln(exp(x)) = x exp(ln(y)) = y logarithmic differentiation. The Big Picture 
4  9/18 Arctan.VI.D  9/19 Begin Integration by parts. 8.1 and VII.C  9/20 More integration by parts.  9/21 Parts with Definite Integrals.
Separation of variables. 10.3 
5  9/25 Growth/Decay Models.10.4  9/26 The Logistic Model 10.5  9/27 Improper Integrals I  9/28 More on improper integrals comparison test.
Numerical Integration.(Linear) 
6 Exam I Covers [8/28,9/28] 
10/2 Integration of rational functions I.VII.F 
10/3(probability densityDarts
Examination #1 [8/28, 9/28] 
10/4
Rational functions II 
10/5 Rational functions III. VII.F 
7  10/9.Improper Integrals II.  10/10 Improper Integrals III Numerical Integration. (quadratic) V.D  10/11 Taylor Theory I. IXA  10/12 Taylor Theory II. IXA 
8  10/16 Applications: Definite integrals and DE's.IXA  10/17 Taylor theory III.IXB.  10/18 More on IXB.  10/19
Taylor theory IV. IX.C 
9  10/23 Taylor Theory, derivatives, integrals, and ln(x).  10/24
Taylor theory.IX.D 
10/25
Begin Sequences and series 12.1 & X.A 
10/26 Geometric sequences
Sequence properties. 
10  10/30 Use of absolute values. Incr&bdd above implies convergent.  10/31 geometric series  11/1 Trig Integrals 8.2
I sin&cos 
11/2 Trig Integrals 8.2
II sec&tan Geometric and Taylor Series. Series Conv. I 
11 Exam II Covers [10/2,11/2]  11/6 How
Newton used Geometric series to find ln(.9) Series Conv. II The divergence test. 
11/7 Taylor Series convergence.X.B1_4
Harmonic Series. Series Conv. III 
11/8 Breath
Prove Theorem on R_{n?} More Darts, Probability density, mean. Examination #2 [10/2, 11/2] 
11/9 
12  11/13 12.3 Positive series & Integral test. Series Conv. IV  11/14 Positive comparison & ratio test [12.4 ++] Series Conv. V  11/15 alternating series Series [12.5] Conv. VI  11/16 Misc on series. Begin L'Hospital's rule I [7.7] 
13 No Classes
Thanksgiving 
11/20  11/21  11/22  11/23 Thanksgiving 
14  11/27 L'Hospital II
Trig substitution (begin area of circle) I (sin) 
11/28 Continue Trig substitution II (sin)
Other Inverse Functions (Arcsin) Series Conv. VII Absolute conv. 
11/29 General ratio test: Series Conv.VIII
Trig substitution III (tan) 
11/30 Trig Substitution III (sec)
Power Series I (Using the ratio test  convergence)XI.A 
15  12/4 Conics I Intro to locianalytic geometry issues
L'Hospital III. 
12/5Conics II(parabolae, ellipses)
Proofs about absolute converg Power Series II (Interval of convergence)XI.A (Calculus) 
12/6 Conics III hyperbolae  12/7 Power Series III (DE's) 
16  12/11Arc Length VIII.B  12/12 Taylor Series 12.10  12/13 More on 12.10  12/14 int(exp(x^2),x)) 
17 Final Examinations  12/18  12/19  12/20  12/21 
The Transcendental Functions.
The Natural Exponential Function. Basic Properties The Natural Logarithm Function. L(t) = Integral from 1 to t of 1/x dx: Basic properties of L(t) = ln(t) = LOG(t) . "inverse" relation between L and exp. Applications of LN . Logarithmic Differentiation. Functions with exponents: a summary. The Trigonometric Functions. The Inverse Trigonometric Functions and Their Derivatives. The Trigonometric Functions and Their Derivatives. Integration of Trigonometric Functions and Elementary Formulas. Integration , Tangent Fields, and Integral Curves. Numerical Approximations. Euler's Method and Difference Equations. Midpoints. Trapezoidal Rule. Parabolic (Simpson's) Rule. Integration by Parts.
Applications: Probability: distributions, density, mean
L'Hopital's Rule: 0/0 inf/inf inf  inf 0*inf 0^ 0 1^inf 
Taylor's Theorem.
Taylor Polynomials. Calculus. Using Taylor Polynomials to Approximate: Error Estimation. Derivative form of the remainder. Approximating known functions, integrals Approximating solutions to diff'l equations using Taylor's theorem. Sequences and Series: Fundamental Properties.
Power Series: Polynomials and Series.
Analytic Geometry, the Conic Sections

Back to Martin Flashman's Home Page
:)
Back
to HSU Math. Department :}
Each week partnerships will submit a response to the "problem/activity of the week." These problems will be special problems distributed in class (and on this web page) or selected starred problems from the assignment lists.
All cooperative problem
work will be graded 5 for well done; 4 for
OK; 3 for acceptable; or 1 for unacceptable; and will be used together
with participation in writing summaries in determining the 80 points allocated
for cooperative assignments.
2 Midterm exams  200 points 
Daily Writing  50 points 
Homework  80 points 
Reality Quizzes  100 points 
Cooperative work  80 points 
Final exam  200 points 
TOTAL  710 points 
The total points available for the semester is 710. Notice that only 400 of these points are from examinations, so regular participation is essential to forming a good foundation for your grades as well as your learning.
MORE THAN 4 ABSENCES MAY LOWER THE FINAL GRADE FOR POOR ATTENDANCE.
Back to HSU Math. Department :}