I | II | III | IV |
DateDue: | Read: | Do: | ||||||||
8-29 | Background
Reality Check |
|||||||||
8-30 | IV.D | 1-11 odd | 23 | 24 | ||||||
8-30 | 4.10 | 43 | 45 | 47 | 48 | 51 | 52 | |||
8-31 | 10.2 | (i) 2-6 | 9 | 11 | *15 | |||||
9-5 | (ii) 21 | 23 | ||||||||
9-5 | IV.E | 5-9 odd (a&b) | 20 | 21 | 24 | |||||
9-6 | pp 416-422
exponential functions |
|||||||||
9-6 | I.F.2
pp 428-430 (review of logs) |
|||||||||
9-7 | I.F.2 | 3 | 4 | |||||||
9-7&11 | VI.A | |||||||||
9-7 | 7.2 | (i) 29 | 33 | 34 | 37 | 47-51 | 57 | 61 | 63 | 53 |
9-11 | (ii) 62 | 70 | 71-77odd | 79 | 80 | 85 | 86 | |||
9-11 | 7.3 Review of logs | 3-17 odd | 31 | 33 | 35 | 41 | 47 | 59-61 | *78 | |
9-12 | VI.B. | |||||||||
9-13 | 7.4 | (i) 3,7,9,13 | 25 | 28 | 8 | 22 | ||||
9-14 | *7.2 | |||||||||
9-14 | 7.4 | (ii) 15 | 13 | 35 | 52 | |||||
9-18 | (Log diff'n ) | (iii) 45-47 | 53 | 58 | *64 | |||||
9-18 | (Integration ) | (iv) 65 - 71 odd | ||||||||
9-14 | VI.B | 13 | 14 | |||||||
9-14 | VI.C | |||||||||
9-19 | p468 | 19 | 23 | 33 | 37 | 51 | ||||
9-19 | inverse tangent
p472-3 |
|||||||||
9-19 | 7.5 | 2a | 3a | 5b | 16 |
DateDue | Read: | Do: | ||||||||
9-20 | VI.D | 1-4 | 9-13 | 21 | *(22&23) | |||||
9-20 | 7.5 | (i) 25-27 | 34 | 38 | *58 | |||||
(ii) 59 | 62 | 64 | 67 | 69 | 70 | 74* | 75* | |||
(iii) 22 | 23 | 24 | 29 | 20 | 47 | 48 | 63 | 68 | ||
9-21 | Read VII.C | |||||||||
9-21 | 8.1 (parts) | (i)1-11odd | 33 | 51 | 54 | |||||
9-25 | (ii) 15, 21 | 23 | 25 | 29 | 30 | 41 | 42 | 45 | 46 | |
9-25 | 10.3(sep'n of var's) | 1 | 3 | 4 | 7 | 9 | 10 | 15 | ||
9-26 | 10.4
(growth/decay models) |
(i) 1-7odd | ||||||||
9-27 | (ii)9-11 | |||||||||
9-28 | (iii) 13 | 14 | 17 | |||||||
9-27 | 10.5 (logistic model) | 1 | 5 | *(11&12) | ||||||
10-2 | 8.7(num'l integr'n) | (i) 1 | 4 | 7a | 11(a&b) | 27 (n=4&8) | 33a | |||
10-11 | (simpson's method) | (ii) 7b | 11c | 31 | 32 | 35 | 36 | *44 | ||
10-11 | More help on
Simpson's rule,etc can be found in V.D |
|||||||||
9-28 | 8.8 (improper integrals) | (i)3 | 5 | 7 | 8 | 9 | 13 | 21 | 41 | |
10-10 | (ii) 27-30 | 33 | 34 | 37 | 38 | |||||
10-11 | (iii) 49 | 51 | 55 | *60 | 61 | 57 | 71 |
DueDate | Read: | Do: | ||||||||
10/5 | BeginVII.F
(rational functions) |
|||||||||
10/4 | 8.4 | (i) 13 | 14 | 29 | ||||||
10/4 | (ii) 15 | 16 | 17 | 20 | 21 | |||||
10/5 | (iii) 31 | 35 | 36 | 62 | 25 | |||||
10/9 | Handout on x ln(x). | |||||||||
10/10 | VII.F | 1 | 3 | 7 | 10 | 14 | 15 | |||
10/12 | IXA | |||||||||
10/16 | IXA | 1-3 | ||||||||
10/17 | IXA | 4 | 6 | 8 | 9 | *10 | ||||
10/17 | Read IX B | |||||||||
10/18 | IXB | (i)1 | 2 | 4 | 5 | 7 | ||||
10/19 | (ii) | 11 | 13 | 14 | *23 | |||||
10/23 | IX.C | (i) 1-5 | ||||||||
10/23 | IX.C | (ii) 6-9 | ||||||||
10/24 | IX.C | (iii) 12 | 14 | 16-18 | ||||||
10/25 | IX.D | 1 | 3 | 5 | 8 | 10 | 14 | 15 | ||
10/26 | 12.1 pp 727-729;
examples 5-8 (sequences converge) |
|||||||||
10/26 | X.A | |||||||||
10/30 | X.A | 1-3 | 5 | 7-9 | ||||||
10/30 | 12.1 | (i) 3-23 odd | ||||||||
10/31 | (ii) 39-43 odd | 51 | 53-57 | 61 | *63 | *64 | ||||
10/.31 | 12.2 pp 738 -741
(series- geometric series) |
|||||||||
11/1 | 12.2
(series- geometric series): |
(i) 3 | 11-15 | 35-37 | *51 | |||||
11/1 | X.B1_4 | |||||||||
11/2 | 12.2 (geometric, etc) | (ii)41-45 | 49 | 50 | 51 | |||||
11/7 | 12.2 pp 742-745 | (iii) 21-31odd | ||||||||
11/14 | 12.3 | (i) 1 | 3-7 | |||||||
11/14 | (ii) 9-15 odd | |||||||||
11/9 | X.B1_4 | |||||||||
11/2 | 8.2 (trig integrals) | (i)1-5 | 7-15 odd | |||||||
11/6 | (ii) 21-25 odd | 33 | 34 | 45 | 44 | 57 | *59 | *60 | *61 | |
11/13 | 9.5 pp 603-607
andDarts |
1,3,4,5 | ||||||||
11/28 | 8.3 (trig subs)
pp 517-519 middle |
|||||||||
11/29 | (i) pp 517-519 middle | 2 | 4 | 7 | 11 | |||||
11/30 | (ii) pp 519-520 |
3 |
6 | 19 | 9 | |||||
12/4 | (iii) pp 521-522 | 1 | 5 | 21 | 23 | 27 | 29 | |||
12/11? | Ch 8 review problems | 1-11 odd | 33 | 35 |
Date Due | Read: | Do: | ||||||
11/27 | 7.7 p 487 note 3 | (i) 5-11 odd | ||||||
11/27 | examples 1-5 | (ii)21 | 27 | 29 | 15 | 23 | 18 | 33 |
11/28 | examples 6-8 | (iii) 39-43 odd | 47-51 odd | |||||
12/5 |
|
|
|
|
|
|
||
12/5 | 11.6: pp709-11 (thru ex.3) | |||||||
12/6 |
|
|
|
29 | ||||
12/6 | pp 711-12 | (ii) 11-14 | 31 | 33 | ||||
12/7 | (iii) 19-22 | 37 | 39 | 47 | *50 | |||
12.4 (comparison test) | (i) 3-7 | |||||||
(ii) 9-17 odd | ||||||||
11/16 | 12.5 | (i) 2-5; 23 | 25 | 31 | ||||
11/27 | (ii) 9-15 odd | |||||||
11/15 | 12.6 Use the ratio test
to test for convergence. |
2 | 17 | 23 | 20 | 29 | *34 | |
11/29 | 12.6 | |||||||
11/30 | 12.6 | 3-9 odd | 19 | *(31&32) | 33 | 35 | ||
X.B5 | ||||||||
12.5 | 3-11 odd | 21 | 23 | 27 | *35 | |||
12.7 | 1-11 odd | |||||||
12/4 | XI.A | |||||||
12/4 | 12.8 | 3-11 odd | ||||||
12/11 | 12.9 | 3-9 odd | 25 | 29 | ||||
12/13 | 12.10 | 31 | 35 | 56 | 41 | 45 | 57 | 58 |
12/11 | 9.1 though p 578 | |||||||
12/12 | 9.1 | 1 | 3 | 19 | 21 | |||
9.2 | 5 | 7 | 9 | |||||
9.5 | 1 | 3 | 7* |
CALENDAR SCHEDULE
(Subject to change)
Week | Mon. | Tues. | Wed. | Thurs. |
1 | 8/28 Introduction & Review | 8/29 Differential equations and Direction Fields IV.D
[Demos from Bradley-Smith 1. 2] |
8/30 More on Direction Fields | 8/31 Euler's Method IV.E |
2 | 9/4
No Class. Labor Day. |
9/5 Exponential functions y=2x. I.F.2;
begin 7.2.
e estimate from (1+1/n)n . |
9/6 More on models for (Population) Growth and Decay:
y' = k y; y(0)=1. k = 1. |
9/7 The exponential function.VI.A |
3 | 9/11Applications to graphing. More on the relation between the DE y'=y with y(0)=1 and ex. | 9/12 The natural logarithm function.I.F.2
y = ln (x) and ln(2) Models for learning. y' = k / x; y(1)=0. k =1 |
9/13 VI.B
7.3 & 7.4, 7.2* |
9/14 Connections: 7.4* VI.C
ln(exp(x)) = x exp(ln(y)) = y logarithmic differentiation. The Big Picture |
4 | 9/18 Arctan.VI.D | 9/19 Begin Integration by parts. 8.1 and VII.C | 9/20 More integration by parts. | 9/21 Parts with Definite Integrals.
Separation of variables. 10.3 |
5 | 9/25 Growth/Decay Models.10.4 | 9/26 The Logistic Model 10.5 | 9/27 Improper Integrals I | 9/28 More on improper integrals comparison test.
Numerical Integration.(Linear) |
6 Exam I Covers [8/28,9/28] |
10/2 Integration of rational functions I.VII.F |
10/3(probability density-Darts
Examination #1 [8/28, 9/28] |
10/4
Rational functions II |
10/5 Rational functions III. VII.F |
7 | 10/9.Improper Integrals II. | 10/10 Improper Integrals III Numerical Integration. (quadratic) V.D | 10/11 Taylor Theory I. IXA | 10/12 Taylor Theory II. IXA |
8 | 10/16 Applications: Definite integrals and DE's.IXA | 10/17 Taylor theory III.IXB. | 10/18 More on IXB. | 10/19
Taylor theory IV. IX.C |
9 | 10/23 Taylor Theory, derivatives, integrals, and ln(x). | 10/24
Taylor theory.IX.D |
10/25
Begin Sequences and series 12.1 & X.A |
10/26 Geometric sequences
Sequence properties. |
10 | 10/30 Use of absolute values. Incr&bdd above implies convergent. | 10/31 geometric series | 11/1 Trig Integrals 8.2
I sin&cos |
11/2 Trig Integrals 8.2
II sec&tan Geometric and Taylor Series. Series Conv. I |
11 Exam II Covers [10/2,11/2] | 11/6 How
Newton used Geometric series to find ln(.9) Series Conv. II The divergence test. |
11/7 Taylor Series convergence.X.B1_4
Harmonic Series. Series Conv. III |
11/8 Breath
Prove Theorem on Rn? More Darts, Probability density, mean. Examination #2 [10/2, 11/2] |
11/9 |
12 | 11/13 12.3 Positive series & Integral test. Series Conv. IV | 11/14 Positive comparison & ratio test [12.4 ++] Series Conv. V | 11/15 alternating series Series [12.5] Conv. VI | 11/16 Misc on series. Begin L'Hospital's rule I [7.7] |
13 No Classes
Thanksgiving |
11/20 | 11/21 | 11/22 | 11/23 Thanksgiving |
14 | 11/27 L'Hospital II
Trig substitution (begin- area of circle) I (sin) |
11/28 Continue Trig substitution II (sin)
Other Inverse Functions (Arcsin) Series Conv. VII Absolute conv. |
11/29 General ratio test: Series Conv.VIII
Trig substitution III (tan) |
11/30 Trig Substitution III (sec)
Power Series I (Using the ratio test - convergence)XI.A |
15 | 12/4 Conics I Intro to loci-analytic geometry issues
L'Hospital III. |
12/5Conics II(parabolae, ellipses)
Proofs about absolute converg Power Series II (Interval of convergence)XI.A (Calculus) |
12/6 Conics III hyperbolae | 12/7 Power Series III (DE's) |
16 | 12/11Arc Length VIII.B | 12/12 Taylor Series 12.10 | 12/13 More on 12.10 | 12/14 int(exp(-x^2),x)) |
17 Final Examinations | 12/18 | 12/19 | 12/20 | 12/21 |
The Transcendental Functions.
The Natural Exponential Function. Basic Properties The Natural Logarithm Function. L(t) = Integral from 1 to t of 1/x dx: Basic properties of L(t) = ln(t) = LOG(t) . "inverse" relation between L and exp. Applications of LN . --Logarithmic Differentiation. --Functions with exponents: a summary. The Trigonometric Functions. The Inverse Trigonometric Functions and Their Derivatives. The Trigonometric Functions and Their Derivatives. Integration of Trigonometric Functions and Elementary Formulas. Integration , Tangent Fields, and Integral Curves. Numerical Approximations. Euler's Method and Difference Equations. Midpoints. Trapezoidal Rule. Parabolic (Simpson's) Rule. Integration by Parts.
Applications: Probability: distributions, density, mean
L'Hopital's Rule: 0/0 inf/inf inf - inf 0*inf 0^ 0 1^inf |
Taylor's Theorem.
Taylor Polynomials. Calculus. Using Taylor Polynomials to Approximate: Error Estimation. Derivative form of the remainder. Approximating known functions, integrals Approximating solutions to diff'l equations using Taylor's theorem. Sequences and Series: Fundamental Properties.
Power Series: Polynomials and Series.
Analytic Geometry, the Conic Sections
|
Back to Martin Flashman's Home Page
:)
Back
to HSU Math. Department :}
Each week partnerships will submit a response to the "problem/activity of the week." These problems will be special problems distributed in class (and on this web page) or selected starred problems from the assignment lists.
All cooperative problem
work will be graded 5 for well done; 4 for
OK; 3 for acceptable; or 1 for unacceptable; and will be used together
with participation in writing summaries in determining the 80 points allocated
for cooperative assignments.
2 Midterm exams | 200 points |
Daily Writing | 50 points |
Homework | 80 points |
Reality Quizzes | 100 points |
Cooperative work | 80 points |
Final exam | 200 points |
TOTAL | 710 points |
The total points available for the semester is 710. Notice that only 400 of these points are from examinations, so regular participation is essential to forming a good foundation for your grades as well as your learning.
MORE THAN 4 ABSENCES MAY LOWER THE FINAL GRADE FOR POOR ATTENDANCE.
Back to HSU Math. Department :}