Martin Flashman's Courses
Math 110 Calculus II Fall, '01
MWF 2:00-3:10 pm SH  128
Final Examination Self- Schedule... Click Here!
Check List of Topics for Final Examination

Back to Martin Flashman's Home Page :) Last updated: 8/15/01
Fall, 2001     Problem Assignments - Updated regularly. (Tentative as of 8-15-01)       M.FLASHMAN
MATH 110 : CALCULUS II                   Stewart's Calculus 4th ed'n.
Assignments and recommended problems I (*= interesting but optional)
DateDue: Read: Do:  
8-29 IV.D Background 
Reality Check
8-31 IV.D 1-11 odd [parts a and b only] 23 24
8-31 4.10 43 45 47 48 51 52
9-5 10.2  (i) 2-6 9 11 *15
9-7 (ii) 21 23
9-5   IV.E 5-9 odd (a&b) 20 21 24
9-7 exponential functions
I.F.2
Stewart: pp 416-422
 9-10/12? I.F.2
pp 428-430 
(review of logs)
 9-10 I.F.2  3 4
 9-10 VI.A
 9-10 7.2  (i) 29 33 34 37 47-51 57 61 63 53
 9-12 (ii) 62 70 71-77odd 79 80 85 86
 9-12 7.3 Review of logs 3-17 odd 31 33 35 41 47 59-61 *78
9-14 VI.B.
9-14 7.4 (i) 3,7,9,13 25 28 8 22
*7.2
9-17  7.4 (ii) 15 13 35 52
9-17  (Log diff'n ) (iii) 45-47 53 58 *64
9-17 (Integration ) (iv) 65 - 71 odd
9-19  VI.B 13 14
 9-19 VI.C
9-19 p468  19 23 33 37 51
9-21 inverse tangent 
p472-3
 9-21 7.5  2a 3a 5b 16

 
Assignments and recommended problems II (*= interesting but optional)
DateDue Read: Do:
9-21 VI.D 1-4 9-13 21 *(22&23)
9-21 7.5  (i) 25-27 34 38 58
  (ii) 59 62 64 67 69 70 74* 75*
    (iii) 22 23 24 29 20 47 48 63 68
9-24  Read VII.C
9-24 8.1 (parts) (i)1-11odd 33 51 54
9-26   (ii) 15, 21 23 25 29 30 41 42 45 46
9-26 10.3(sep'n of var's)(i) (i) 1 3 4 7
9-28 (ii) 9 10 15
10-1 10.4
(growth/decay models)
(i) 1-7odd 
10-1 (ii)9-11
10-3 (iii) 13 14 17
10-8 10.5 (logistic model) 1 5 *(11&12)
10-3  8.7(num'l integr'n) (i) 1 4 7a 11(a&b) 27 (n=4&8) 33a
10-8 (simpson's method) (ii) 7b 11c 31 32 35 36 *44
10-8 More help on 
Simpson's rule,etc
can be found in V.D
9-28 8.8 (improper integrals) (i)3 5 7 8 9 13 21 41
10-15 finish reading 8.8
10-17 (ii) 27-30 33 34 37 38
10-19 (iii) 49 51 55 *60 61 57 71
Assignments and recommended problems III (*= interesting but optional)
DueDate Read: Do:
10/10 BeginVII.F
(rational functions)
10/10 8.4  (i) 13 14 29
10/10 (ii) 15 16 17 20 21 
10/12 (iii) 31 35 36 62 25
10/10&12 Darts
10/17 9.5 pp 603-607
andDarts
1,3,4,5
TBA VII.F 1 3 7 10 14 15
10/15&17&19  IXA
10/22 IXA 1-3
10/22 IXA 4 6 8 9 *10
10/22 Read IX B
10/24 IXB (i)1 2 4 5 7
10/26 (ii) 11 13 14 *23
10/26 IX.C (i) 1-5
10/29 IX.C (ii) 6-9
10/29 IX.C (iii) 12 14 16-18
10/31 IX.D 1 3 5 8 10 14 15
11/2 12.1 pp 727-729; 
examples 5-8 
(sequences converge)
10/31 X.A
11/2 X.A 1-3 5 7-9
11/5 12.1 (i) 3-23 odd  39-43 odd
11/5 (ii)51 53-57 61 *63 *64
11/5 12.2 pp 738 -741 
(series- geometric series)
11/7 12.2
(series- geometric series): 
(i) 3 11-15 35-37 *51
11/9  X.B1_4
11/9 12.2 (geometric, etc) (ii)41-45 49 50 51
11/12 12.2 pp 742-745 (iii) 21-31odd
11/14 12.3 (i) 1 3-7
(ii) 9-15 odd
X.B1_4
11/12 8.2 (trig integrals) (i)1-5 7-15 odd
11/14 (ii) 21-25 odd 33 34 45 44 57 *59 *60 *61
11/28 8.3 (trig subs)
pp 517-519 middle
11/28  (i) pp 517-519 middle 2 4 7 11
11/30   (ii) pp 519-520
3
6 19 9
12/3  (iii) pp 521-522 1 5 21 23 27   29
  Ch 8 review problems 1-11 odd 33 35

 
Assignments and recommended problemsIV (*= interesting but optional)
 Date Due Read: Do:
11/16 7.7 p 487 note 3 (i) 5-11 odd
11/16         examples 1-5 (ii)21 27 29 15 23 18 33
11/16         examples 6-8 (iii) 39-43 odd 47-51 odd
 11/28
examples 9-10
(iv) 55
57 
63
*96
*97
   
12/5  11.6: pp709-11 (thru ex.3)
12/7
11.6 : pp 709-10 
(i) 1-7 odd
 27
29
12/7          pp 711-12 (ii) 11-14 31 33
12/10 (iii) 19-22  37 39 47 *50
 11/28 12.4 (comparison test) (i) 3-7
 11/30 (ii) 9-17 odd
11/28 12.5 
11/30 (i) 2-5; 23 25 31
12/3 (ii) 9-15 odd
11/30 12.6 Use the ratio test 
to test for convergence.
2 17 23 20 29 *34
12/3 12.6 3-9 odd 19 *(31&32) 33 35
11/30  X.B5
 12/5 12.5 3-11 odd 21 23 27 *35
12/5 12.7 1-11 odd
12/5 XI.A
12/10 12.8 3-11 odd
12/12 12.9 3-9 odd 25 29
12/12 Read Only 12.10 31 35 56 41 45 57 58
  9.1 though p 578
12/12 9.1 1 3 19 21
9.2 5 7 9
9.5 1 3 7*

 
CALENDAR SCHEDULE
(Subject to change- last revision noted 10-3?)
Week
Monday
Wednesday
Friday
1 8/27 Introduction & Review 8/29  More review.
Differential equations and Direction Fields IV.D
8/31 Euler's Method  IV.E
2 9/3
No Class.  Labor Day.
9/5 More euler's method Exponential functions y=2x. I.F.2.  9/7e estimate from (1+1/n)n
Begin 7.2 and Models for (Population) Growth  and Decay:
y' = k y; y(0)=1. k = 1.
The exponential function.VI.A
Applications to graphing. 
3 9/10More on the relation between the DE y'=y with y(0)=1  and ex.
The natural logarithm function.I.F.2 
y = ln (x) and ln(2) Models for learning.
y' = k / x; y(1)=0. k =1
9/12 VI.B
7.3 & 7.4, 7.2*
9/14 Connections: 7.4* VI.C
logarithmic differentiation. 
4 9/17 ln(exp(x)) = x
exp(ln(y)) = y
9/19 The Big Picture
Arctan.VI.D
9/21 More on Arctan.
Integration by parts. 8.1 and VII.C
5 9/24 Parts with Definite Integrals. Separation of variables. 10.3 9/26 Growth/Decay Models.10.4 
Improper Integrals I 
9/28 More on improper integrals
6 Exam I 
Covers 
[8/28,9/28]

10/1 Numerical Integration.(Linear)
10/3Numerical Integration. (quadratic) V.D
The Logistic Model 10.5
10/5 Examination #1
[8/27, 9/28]
7 10/8Integration of rational functions I.VII.F 10/10 probability density-Darts
Rational functions II. VII.F
10/12 
More Darts Probability density, mean
8 10/15 Rational functions III VII.F
Improper Integrals II
10/17
Improper Integrals III comparison tests.
10/19 Taylor Theory I. IXA
Applications: Definite integrals and DE's.IXA
.
9 10/22Taylor theory II.IXB 10/24  Taylor theory III. IXB & IX.C 10/26 
Taylor Theory derivatives, integrals, and ln(x).
10 10/29 Taylor theory.IX.D 10/31Begin Sequences and series 
12.1 & X.A
11/2 Geometric sequences 
Sequence properties.
Use of absolute values. Incr&bdd above implies convergent.
11 Exam II
Covers 
[10/2,11/2]
11/5 How Newton used Geometric series to find ln(.9)
geometric series Series Conv. I
11/7 Examination #2
[10/2, 11/2].
11/9  Trig Integrals 8.2
I sin&cos
Geometric and Taylor Series. 
Series Conv. II The divergence test.
Harmonic Series.
12 11/12 Trig Integrals 8.2 II sec&tan
Series Conv. III
12.3 Positive series & Integral test.
Taylor Series convergence.X.B1_4
Prove Theorem on Rn?
11/14 L'Hospital's rule I [7.7] 11/16
L'Hospital II. 
13 No Classes
Thanksgiving
11/19 11/21 11/23 Thanksgiving
14 11/26  Series Conv. IV
Positive comparison test [12.4 ++] Begin
Alternating Series [12.5] 
Trig substitution (begin- area of circle) I (sin)
11/28 Series Conv. V Misc & ratio test intro.
Trig substitution II (tan)
11/30 Trig Substitution III (sec)
Other Inverse Functions (Arcsin) 
 Series Conv.VI Absolute conv. & conditional Convergence
15 12/3 Power Series I General ratio test:
(Using the ratio test - convergence) XI.A
Conics I Intro to loci-analytic geometry issues. Conics II(parabolae, ellipses) 
12/5 Power Series II (Interval of convergence)XI.A
(Calculus)
Conics III hyperbolae 
12/7 Breath 
Power Series III (DE's)
16 12/10 Arc Length VIII.B
Taylor Series 12.10
12/12 More on 12.10
Proof Of L'Hospital's Rule?
12/14 int(exp(-x^2),x))
17 Final Examinations 12/17  12/19 12/21
Math 110 Final Topic Check List     December 14, 2000 Core Topics are italicized.
The Transcendental Functions.
  The Natural Exponential Function.    Basic Properties 
  The Natural Logarithm Function.
    L(t) = ò1t 1/x dx:
         Basic properties of L(t) = ln(t) = LOG(t) .
        "inverse" relation between L  and exp. 
        Applications of  LN . 
                --Logarithmic Differentiation. 
                --Functions with exponents:  a summary. 
 The Trigonometric Functions.
    The Inverse Trigonometric Functions and Their Derivatives.
    The Trigonometric Functions and Their Derivatives.
    Integration of Trigonometric Functions and Elementary Formulas. 
Integration , Tangent Fields, and Integral Curves.
   Numerical Approximations.
            Euler's Method.
            Midpoints.
            Trapezoidal Rule.
            Parabolic (Simpson's) Rule.

   Integration by Parts. 
   Integration of Trigonometric Functions.
   Trigonometric Substitutions.
   Integration of Rational Functions.
            Simple examples. Simple Partial fractions.
   Separation of Variables.

Applications: Probability: distributions, density, mean
    Arc Length Formula
Improper Integrals: Extending the Concepts of Integration.
               Integrals with noncontinuous functions.
               Integrals with unbounded intervals.

L'Hopital's Rule: 0/0    inf/inf    inf - inf   0*inf    0^ 0   1^inf 

Taylor's Theorem.
  Taylor Polynomials. Calculus.
  Using Taylor Polynomials to Approximate:  Error  Estimation.
      Derivative form of the remainder.
      Approximating known functions, integrals
      Approximating solutions to diff'l equations using Taylor's theorem.

Sequences and Series: Fundamental Properties.
  Sequences.
  Simple examples and definitions: visualizing sequences.
         How to find limits.
         Key theory of convergence.
             The algebra of convergence.
             Convergence for monotonic sequences.
  Geometric series. Harmonic series. Taylor approximations.
  Theory of convergence (series).
     The divergence test.
     Positive series.
      Bounded convergence tests.
      Integral tests.
      Ratio test (Part I).
      Absolute convergence.
         Absolute convergence implies convergence.
         Alternating Series Test.
Ratio test (Part II).

Power Series: Polynomials and Series.
 The radius and interval of convergence.
 Functions and power series [derivatives and integrals].

Analytic Geometry, the Conic Sections
          The Conic Sections as Loci.
 Equations for conics centered at (0,0)

Back to Martin Flashman's Home Page :) Back to HSU Math. Department :}



Fall, 2001                 COURSE INFORMATION               M.FLASHMAN
MATH 110 : CALCULUS II                      MWF29:00-3:10 P.M. SH128
OFFICE: Library 48                                        PHONE:826-4950
Hours (Tent.):  MWF 9:30-10:30  AND BY APPOINTMENT or chance!
E-MAIL:flashman@axe.humboldt.edu                WWW:      http://flashman.neocities.org/
***PREREQUISITE: Math 109 or permission.


Back to Martin Flashman's Home Page :)

Back to HSU Math. Department :}