DateDue: | Read: | Do: | ||||||||
8-29 | IV.D | Background
Reality Check |
||||||||
8-31 | IV.D | 1-11 odd [parts a and b only] | 23 | 24 | ||||||
8-31 | 4.10 | 43 | 45 | 47 | 48 | 51 | 52 | |||
9-5 | 10.2 | (i) 2-6 | 9 | 11 | *15 | |||||
9-7 | (ii) 21 | 23 | ||||||||
9-5 | IV.E | 5-9 odd (a&b) | 20 | 21 | 24 | |||||
9-7 | exponential functions
I.F.2 Stewart: pp 416-422 |
|||||||||
9-10/12? | I.F.2
pp 428-430 (review of logs) |
|||||||||
9-10 | I.F.2 | 3 | 4 | |||||||
9-10 | VI.A | |||||||||
9-10 | 7.2 | (i) 29 | 33 | 34 | 37 | 47-51 | 57 | 61 | 63 | 53 |
9-12 | (ii) 62 | 70 | 71-77odd | 79 | 80 | 85 | 86 | |||
9-12 | 7.3 Review of logs | 3-17 odd | 31 | 33 | 35 | 41 | 47 | 59-61 | *78 | |
9-14 | VI.B. | |||||||||
9-14 | 7.4 | (i) 3,7,9,13 | 25 | 28 | 8 | 22 | ||||
*7.2 | ||||||||||
9-17 | 7.4 | (ii) 15 | 13 | 35 | 52 | |||||
9-17 | (Log diff'n ) | (iii) 45-47 | 53 | 58 | *64 | |||||
9-17 | (Integration ) | (iv) 65 - 71 odd | ||||||||
9-19 | VI.B | 13 | 14 | |||||||
9-19 | VI.C | |||||||||
9-19 | p468 | 19 | 23 | 33 | 37 | 51 | ||||
9-21 | inverse tangent
p472-3 |
|||||||||
9-21 | 7.5 | 2a | 3a | 5b | 16 |
DateDue | Read: | Do: | ||||||||
9-21 | VI.D | 1-4 | 9-13 | 21 | *(22&23) | |||||
9-21 | 7.5 | (i) 25-27 | 34 | 38 | 58 | |||||
(ii) 59 | 62 | 64 | 67 | 69 | 70 | 74* | 75* | |||
(iii) 22 | 23 | 24 | 29 | 20 | 47 | 48 | 63 | 68 | ||
9-24 | Read VII.C | |||||||||
9-24 | 8.1 (parts) | (i)1-11odd | 33 | 51 | 54 | |||||
9-26 | (ii) 15, 21 | 23 | 25 | 29 | 30 | 41 | 42 | 45 | 46 | |
9-26 | 10.3(sep'n of var's)(i) | (i) 1 | 3 | 4 | 7 | |||||
9-28 | (ii) 9 | 10 | 15 | |||||||
10-1 | 10.4
(growth/decay models) |
(i) 1-7odd | ||||||||
10-1 | (ii)9-11 | |||||||||
10-3 | (iii) 13 | 14 | 17 | |||||||
10-8 | 10.5 (logistic model) | 1 | 5 | *(11&12) | ||||||
10-3 | 8.7(num'l integr'n) | (i) 1 | 4 | 7a | 11(a&b) | 27 (n=4&8) | 33a | |||
10-8 | (simpson's method) | (ii) 7b | 11c | 31 | 32 | 35 | 36 | *44 | ||
10-8 | More help on
Simpson's rule,etc can be found in V.D |
|||||||||
9-28 | 8.8 (improper integrals) | (i)3 | 5 | 7 | 8 | 9 | 13 | 21 | 41 | |
10-15 | finish reading 8.8 | |||||||||
10-17 | (ii) 27-30 | 33 | 34 | 37 | 38 | |||||
10-19 | (iii) 49 | 51 | 55 | *60 | 61 | 57 | 71 |
DueDate | Read: | Do: | ||||||||
10/10 | BeginVII.F
(rational functions) |
|||||||||
10/10 | 8.4 | (i) 13 | 14 | 29 | ||||||
10/10 | (ii) 15 | 16 | 17 | 20 | 21 | |||||
10/12 | (iii) 31 | 35 | 36 | 62 | 25 | |||||
10/10&12 | Darts | |||||||||
10/17 | 9.5 pp 603-607
andDarts |
1,3,4,5 | ||||||||
TBA | VII.F | 1 | 3 | 7 | 10 | 14 | 15 | |||
10/15&17&19 | IXA | |||||||||
10/22 | IXA | 1-3 | ||||||||
10/22 | IXA | 4 | 6 | 8 | 9 | *10 | ||||
10/22 | Read IX B | |||||||||
10/24 | IXB | (i)1 | 2 | 4 | 5 | 7 | ||||
10/26 | (ii) | 11 | 13 | 14 | *23 | |||||
10/26 | IX.C | (i) 1-5 | ||||||||
10/29 | IX.C | (ii) 6-9 | ||||||||
10/29 | IX.C | (iii) 12 | 14 | 16-18 | ||||||
10/31 | IX.D | 1 | 3 | 5 | 8 | 10 | 14 | 15 | ||
11/2 | 12.1 pp 727-729;
examples 5-8 (sequences converge) |
|||||||||
10/31 | X.A | |||||||||
11/2 | X.A | 1-3 | 5 | 7-9 | ||||||
11/5 | 12.1 | (i) 3-23 odd | 39-43 odd | |||||||
11/5 | (ii)51 | 53-57 | 61 | *63 | *64 | |||||
11/5 | 12.2 pp 738 -741
(series- geometric series) |
|||||||||
11/7 | 12.2
(series- geometric series): |
(i) 3 | 11-15 | 35-37 | *51 | |||||
11/9 | X.B1_4 | |||||||||
11/9 | 12.2 (geometric, etc) | (ii)41-45 | 49 | 50 | 51 | |||||
11/12 | 12.2 pp 742-745 | (iii) 21-31odd | ||||||||
11/14 | 12.3 | (i) 1 | 3-7 | |||||||
(ii) 9-15 odd | ||||||||||
X.B1_4 | ||||||||||
11/12 | 8.2 (trig integrals) | (i)1-5 | 7-15 odd | |||||||
11/14 | (ii) 21-25 odd | 33 | 34 | 45 | 44 | 57 | *59 | *60 | *61 | |
11/28 | 8.3 (trig subs)
pp 517-519 middle |
|||||||||
11/28 | (i) pp 517-519 middle | 2 | 4 | 7 | 11 | |||||
11/30 | (ii) pp 519-520 |
3 |
6 | 19 | 9 | |||||
12/3 | (iii) pp 521-522 | 1 | 5 | 21 | 23 | 27 | 29 | |||
Ch 8 review problems | 1-11 odd | 33 | 35 |
Date Due | Read: | Do: | ||||||
11/16 | 7.7 p 487 note 3 | (i) 5-11 odd | ||||||
11/16 | examples 1-5 | (ii)21 | 27 | 29 | 15 | 23 | 18 | 33 |
11/16 | examples 6-8 | (iii) 39-43 odd | 47-51 odd | |||||
11/28 |
|
|
|
|
|
|
||
12/5 | 11.6: pp709-11 (thru ex.3) | |||||||
12/7 |
|
|
|
29 | ||||
12/7 | pp 711-12 | (ii) 11-14 | 31 | 33 | ||||
12/10 | (iii) 19-22 | 37 | 39 | 47 | *50 | |||
11/28 | 12.4 (comparison test) | (i) 3-7 | ||||||
11/30 | (ii) 9-17 odd | |||||||
11/28 | 12.5 | |||||||
11/30 | (i) 2-5; 23 | 25 | 31 | |||||
12/3 | (ii) 9-15 odd | |||||||
11/30 | 12.6 Use the ratio test
to test for convergence. |
2 | 17 | 23 | 20 | 29 | *34 | |
12/3 | 12.6 | 3-9 odd | 19 | *(31&32) | 33 | 35 | ||
11/30 | X.B5 | |||||||
12/5 | 12.5 | 3-11 odd | 21 | 23 | 27 | *35 | ||
12/5 | 12.7 | 1-11 odd | ||||||
12/5 | XI.A | |||||||
12/10 | 12.8 | 3-11 odd | ||||||
12/12 | 12.9 | 3-9 odd | 25 | 29 | ||||
12/12 Read Only | 12.10 | 31 | 35 | 56 | 41 | 45 | 57 | 58 |
9.1 though p 578 | ||||||||
12/12 | 9.1 | 1 | 3 | 19 | 21 | |||
9.2 | 5 | 7 | 9 | |||||
9.5 | 1 | 3 | 7* |
Week |
|
|
|
1 | 8/27 Introduction & Review | 8/29 More review.
Differential equations and Direction Fields IV.D |
8/31 Euler's Method IV.E |
2 | 9/3
No Class. Labor Day. |
9/5 More euler's method Exponential functions y=2x. I.F.2. | 9/7e estimate from (1+1/n)n.
Begin 7.2 and Models for (Population) Growth and Decay: y' = k y; y(0)=1. k = 1. The exponential function.VI.A Applications to graphing. |
3 | 9/10More on the relation between the DE y'=y with y(0)=1 and
ex.
The natural logarithm function.I.F.2 y = ln (x) and ln(2) Models for learning. y' = k / x; y(1)=0. k =1 |
9/12 VI.B
7.3 & 7.4, 7.2* |
9/14 Connections: 7.4* VI.C
logarithmic differentiation. |
4 | 9/17 ln(exp(x)) = x
exp(ln(y)) = y |
9/19 The
Big Picture
Arctan.VI.D |
9/21 More on Arctan.
Integration by parts. 8.1 and VII.C |
5 | 9/24 Parts with Definite Integrals. Separation of variables. 10.3 | 9/26 Growth/Decay Models.10.4
Improper Integrals I |
9/28 More on improper integrals |
6 Exam I
Covers [8/28,9/28] |
10/1 Numerical Integration.(Linear) |
10/3Numerical Integration. (quadratic) V.D
The Logistic Model 10.5 |
10/5 Examination #1
[8/27, 9/28] |
7 | 10/8Integration of rational functions I.VII.F | 10/10 probability density-Darts
Rational functions II. VII.F |
10/12
More Darts Probability density, mean |
8 | 10/15 Rational functions III VII.F
Improper Integrals II |
10/17
Improper Integrals III comparison tests. |
10/19 Taylor Theory I. IXA
Applications: Definite integrals and DE's.IXA . |
9 | 10/22Taylor theory II.IXB | 10/24 Taylor theory III. IXB & IX.C | 10/26
Taylor Theory derivatives, integrals, and ln(x). |
10 | 10/29 Taylor theory.IX.D | 10/31Begin Sequences and series
12.1 & X.A |
11/2 Geometric sequences
Sequence properties. Use of absolute values. Incr&bdd above implies convergent. |
11 Exam II
Covers [10/2,11/2] |
11/5 How
Newton used Geometric series to find ln(.9) geometric series Series Conv. I |
11/7 Examination #2
[10/2, 11/2]. |
11/9 Trig Integrals 8.2
I sin&cos Geometric and Taylor Series. Series Conv. II The divergence test. Harmonic Series. |
12 | 11/12 Trig Integrals 8.2 II sec&tan
Series Conv. III 12.3 Positive series & Integral test. Taylor Series convergence.X.B1_4 Prove Theorem on Rn? |
11/14 L'Hospital's rule I [7.7] | 11/16
L'Hospital II. |
13 No Classes
Thanksgiving |
11/19 | 11/21 | 11/23 Thanksgiving |
14 | 11/26 Series Conv. IV
Positive comparison test [12.4 ++] Begin Alternating Series [12.5] Trig substitution (begin- area of circle) I (sin) |
11/28 Series Conv. V Misc & ratio test intro.
Trig substitution II (tan) |
11/30 Trig Substitution III (sec)
Other Inverse Functions (Arcsin) Series Conv.VI Absolute conv. & conditional Convergence |
15 | 12/3 Power Series I General ratio test:
(Using the ratio test - convergence) XI.A Conics I Intro to loci-analytic geometry issues. Conics II(parabolae, ellipses) |
12/5 Power Series II (Interval of convergence)XI.A
(Calculus) Conics III hyperbolae |
12/7 Breath
Power Series III (DE's) |
16 | 12/10 Arc Length VIII.B
Taylor Series 12.10 |
12/12 More on 12.10
Proof Of L'Hospital's Rule? |
12/14 int(exp(-x^2),x)) |
17 Final Examinations | 12/17 | 12/19 | 12/21 |
The Transcendental Functions.
The Natural Exponential Function. Basic Properties The Natural Logarithm Function. L(t) = ò1t 1/x dx: Basic properties of L(t) = ln(t) = LOG(t) . "inverse" relation between L and exp. Applications of LN . --Logarithmic Differentiation. --Functions with exponents: a summary. The Trigonometric Functions. The Inverse Trigonometric Functions and Their Derivatives. The Trigonometric Functions and Their Derivatives. Integration of Trigonometric Functions and Elementary Formulas. Integration , Tangent Fields, and Integral Curves. Numerical Approximations. Euler's Method. Midpoints. Trapezoidal Rule. Parabolic (Simpson's) Rule. Integration by Parts.
Applications: Probability: distributions, density, mean
L'Hopital's Rule: 0/0 inf/inf inf - inf 0*inf 0^ 0 1^inf |
Taylor's Theorem.
Taylor Polynomials. Calculus. Using Taylor Polynomials to Approximate: Error Estimation. Derivative form of the remainder. Approximating known functions, integrals Approximating solutions to diff'l equations using Taylor's theorem. Sequences and Series: Fundamental Properties.
Power Series: Polynomials and Series.
Analytic Geometry, the Conic Sections
|
Back to Martin Flashman's Home Page
:)
Back
to HSU Math. Department :}
Each week partnerships will submit a response to the "problem/activity of the week." These problems will be special problems distributed in class (and on this web page) or selected starred problems from the assignment lists.
All cooperative problem work will be graded 5 for well done; 4 for OK; 3 for acceptable; or 1 for unacceptable; and will be used together with participation in writing summaries in determining the 80 points allocated for cooperative assignments.
2 Midterm exams | 200 points |
Daily Writing | 30 points |
Homework | 70 points |
Reality Quizzes | 100 points |
Cooperative work | 80 points |
Final exam | 200/300 points |
TOTAL | 680/780 points |
The total points available for the semester is either 680 or 780. Notice that only 400 or 500 of these points are from examinations, so regular participation is essential to forming a good foundation for your grades as well as your learning.
MORE THAN 3 ABSENCES MAY LOWER THE FINAL GRADE FOR POOR ATTENDANCE.
Back to HSU Math. Department :}