MATH 210 Calculus III
Fall, 2009  10:00 -10:50
MTRF....SH 128
Course Assignments and Schedule




Back to Flashman's Math 210 Main Page :)

Last updated: 8-23-09 Work in progress!


Assignment Problem List (Work in progress) 8-24-09
*Early or Just in time:
When two due dates are given,
the first date is for preparation and/or starting problems,
the second date is for completion of problem work

Date Due Asignment Number
Read: Chapter.Section (pages)
Problems
Interesting/optional
8-27
1
Review of Calc I and II Look at Final Exams from Calc I and II
8-28/31
2
12.1 (changed 8-28!)
12.1: 1-7 odd, 11, 19,21,24,25, 28


9/1
3 10.1 Read- Consider what this has to do with vectors. (changed 8-30!) 10.1: 10,12, 14-16, 44, 31 38, 39, 41,46,47
8/31- 9/3
(Changed  8-31)
4
10.2 630-632:tangents
12.2 pp770- 774
10.2: 1,2,3,5,6
12.2: 17,19,21,23-25, 37

9-10
5
10.2 Re-read 630-632
12.1
12.5 (i) pages 794-797 (lines in space)
10.2:  7, 9,11, 15, 23, 30
12.1: 1, 3, 4, 11, 15, 23-29 odd

12.5: 2-4,7,13

9/10-11
6
13.1
13.2 vector derivatives and  tangent vectors: pp824-826(middle)


13.1: 3,4,19-24, 7,9,11,25,27
13.2: 1,3-5,9,13,14


9/11-14
7
10.2 :arc length
13.3 p830 Ex. 1.
10.2: 37-41, 45, 51

9/14
8
13.2 p825 (Unit tangent vector)
13.3  arc length ( pp 830-831 )

13.2: 17-19, 27, 29
13.3: 1-4,7, 8 (arc length)

9/14
9
13.2 integrals and de's p827-8
13.2: integrals 33-39 odd, 38, 40

9/18
Summary 1  Weeks 1-3+
9/29 POW #1


9/15-17
10
13.4 velocity and acceleration (p)
12.3 dot product
13.4: 1-7 odd, 9-13, 15,17-19
12.3: 1,3,4,8-10,15,16, 23, 25

9/17-18
11 13.2 pp 826-827 (omit  Theorem 3.formula5)
12.3  (angles and projections)again... :)
13.2: 41,45,49
12.3:  5-7, 11, 17, 18, 21, 24, 26,27; 35,36,41,42, 50
13.2: 42,44
9/21-22
12 12.5  794-798 with example 4
12.3 p783-4
13.1 (review?)
12.5: 5,19,23-29 odd
12.3:45,47, 48, 51, 52
13.1: 28,29, 32
12.3:54, 57-59

9/22-24
13 13.3 Curvature I (p832and Ex.3) 13.3: 17b,19 b (curvature) 13.3:30
9/24-25
14 14.1 pp 855-859
On-line Materials on 1 controlling 2 or 3 variables
14.1: 1,2, 5-9 odd, 15,17
10/5
15 14.1 pp 860-865 14.1:Sketch a scalar field for the integer lattice of [-2,2]x[-2,2] : 21-27,37-43 odd
Not reported on Blackboard.

14.1: 30, 35-38, 55-60 (Graphs)
14.1:  17, 31, 32, 65,69

10/8
Summary #2 weeks 4 - 6 +


10/8
16 14.3 read pp878-881 14.3: 3a,15-29 odd
10/8-9
17
14.3 read pp881-885 14.3:  24,26, 34, 31, 37; 45,  49, 51, 58
10/8-9
18
14.4 ppread 892-893 14.4: 1-5,7
10/8-9
19
14.4  read 893-898
14.4: 17,18, 25-28, 31, 33,36
10/9-12
20
14.2  pp 870-875
14.4 Finish Section.
14.2: 3,4, 5-11odd
14.4: 11, 12, 35, 37
14.4: 45,46
Exam #1 on  October 13 -14 covers Assigned Material through Assignment 21.
10/9-12
21
14.5:  1-2-1 pp901-902 (Ex. 2) 14.5: 1-4, 13, 35
10/12-13
22
14.5: 2-2-1 pp903-905 14.5:  7-11 odd, 21,22, 39, 43
10/12-13
23
14.5: implicit... pp905-907
14.5: 27-33 odd
10/16-19
24
14.3 read pp 886-889
14.6 pp910-916
14.3: 71,73,77,78
14.6: 7,8, 5, 11 -14; 21-23,27, 30

10/16-19
25
14.6 p 917-919 14.6:37,39,40,47;49,53
10/19
26 14.7 pp 922-ex.1 p923; p 928 14.7: 5-13 odd (use technology to see extreme/saddle)
10/23-26
27 14.7 p923-929 14.7: 6,14,15,17 Read notes on Quadratic Functions on line.
p930
10/23-26
28 14.8 pp 934-938
14.7: 27,29,31
14.8:1-9 odd

10/27-29
29 12.6 Surfaces
15.1  pp 951-955
12.6: 11-17 odd, 21-28, 37-39, 41,43
15.1: 3a,5,9
12.6: 47,49
10/29-30
30 15.1 pp956-958
15.2  p959-960
15.1: 11-13, 17,18
15.2:1-11 odd, 4, 8

11/5-6
31
15.2 pp 961-964
15.3  pp 965- 969
15.2: 13-15, 18,  25, 29
15.3: 1-9 odd, 8, 11-15 odd
15.2:33
11/6-9
32 15.3  pp 969-972
15.4
15.3: 12,19, 39-41
15.4: 1-13 odd
REVIEW: Read 10.3 on Polar coordinates.
Read 10.5 on conics!
See also: wikipedia on the Conic_section
11/10-12
33
12.4 cross products
Notes on Cross Products
15.5 pp980, 985-988
15.3: 45-47 odd, 51, 55,61
12.4: 1-9 odd, 13, 15, 23
15.5:1, 27, 29
Darts
15.5:33
11/17-18
Examination #2  Self Scheduled for 11/17 evening and 11/18.
Covers material assigned through # 33
11/30
34
12.4 p 791-792 (torque)
15.6 Integration in 3 space (rectangular).
15.7
and 15.8 Cylindrical and spherical coordinates. pp1000-1002; 1005-1006
15.7:1-11 odd, 17
15.5: 3(mass only)
15.6: 3,9,11,13,33
15.7:1-11 odd
15.8: 1-5

12/1-3
35
12.4: pp790-792
15.7: pp1002-1003
15.8: pp1007-1009
12.4 : 29, 31; 35; 39
15.7: 17, 21
15.8: 17,21

12/7-8
36
16.1
16.2 pp 1034-1036; pp1041-1043
16.1: 1, 11-18; 29-32
16.2:1,3; 19, 21

12/8-10
37
16.3 pp1046-1048; 1049-1053
16.4 pp1055-1058
16.3: 1, 3-5, 13

Below this line assignments have NOT been revised!


POW #4




34
16.3




35
13.4

13.4: 29,30, 33, 41,18,42,4



36




38
11.4 p715-717
16.4 Integration in polar coordinates.


11.4: 1-5 odd, 9




39
16.7 


40




41
13.7
16.7
16.8 Integration in 3 space (Cylindrical and polar)
13.7: 3-9 odd, 13-19 odd, 31,35,36,39, 40, 49-51
16.7: 27, 39 find mass only, 49
16.8:1,2, 5,7 , 15( Mass only)


42
16.8 spherical Integration
16.6 Surface area

16.8: 3,17,33,35
16.6:
1-7 odd




17.1 Vector Fields 17.1:1-7 odd, 15-18,21,27,29-32

POW #6










13.1
13.1: 5, 6, 21, 31,33,35-37


13.5
13.5: 31, 33, 35,53



13.5
13.5: 51, 55-57, 65, 67



14.1

37


14.3 Example 5
14.3: 23-25,31,37,38



15.2  15.2: 17, 21,25, 27,31


16.4
17-19, 21-25 odd, 29, 35


















17.3 pp1114 examples 2 -4a, 5.
3-9 odd. [NOTE: A vector field is called conservative if it is the gradient vector field for a potential function.]



17.3 pp 1110-1117
13,15,17,21,29-31



17.2 Line Integrals 1098 -1100, ex.3,
1103-1104, 1105-1107
7,19, 21, 37



   

Tentative Schedule of Topics, Etc. (last revised )
Week/Day Monday Tuesday Thursday  Friday
1
8/24 Introduction- 
Begin review
Variables- relations-functions. 
What is calculus? Differential Equations?
Introduction to 3-dimensional coordinate geometry.    13.1
Introduction to vectors.
 13.2 "1 variable controlling 2" 
11.1 Parametric curves .  Visualizations: Transformations and graphs. 
2
8/31  More on vectors and functions
"1 variable controlling 2," 2 controlling 1".
 More on vector algebra.  Lines: parametric and vector equations 2 &3 dim. 13.5 The tangent problem 11.2
"1 variable controlling 2 (or 3)." Vector functions, tangent vectors and velocity. 14.1, 14.2
3 9/7 Labor Day Holiday
No Class
Tangent lines, Lengths: segments, vectors, arcs. 10.2, 10.3, 13..3 speed  Smooth curves. Acceleration 13.4 
Differential equations and integrals of vector functions.
Arc length as an integral of speed.
Summary #1 Due 9/18

9/14 The Dot Product. 12.3. More on dot products. 
Smooth curves.
Finish up 1 variable controlling 2 and 3. The calculus of the"vector" derivative
More on dot products Work and dot products
Planes in Space.
The Calculus for r'(t).
5 9/21 Curvature Formulae 13.3
Begin "2 controlling 1 variable"

Tables and Scalar fields. Level Curves. Linear Functions, Equations: Revisit Planes in Space.
Graphs and level curves of  functions of 2 and 3 variables.
Begin Partial Derivative
.
 
6
 
9/28 No Class
Flashman Furlough Day
  Linear (Affine)Functions- lines, planes and vectors.
Second order Partial derivatives.
More on tangents, partial derivatives, planes and "Tangent Planes". The Differentials.Concepts and definitions.
Summary #2 Due 10/8 10/5 What is continuity? What does differentiable mean?
Limits and Continuity. Closeness, Approximations.
 Differentials, C1 and differentiable functions.
Geometry of differentiability- Tangent planes. 
The Chain Rule (1-2-1)
  Chain Rule(2-2-1) 
  Implicit Differentiation

8 Exam #1 Self Scheduled 10/14
10/12 Begin Directional derivatives and the gradient.Geometry of the gradient. Finish Gradient and level curve/surfaces. Review for Exam.
More Gradient and level surfaces. Tangent planes from gradients.
Testing for extremes.
9 10/19 Extrema on compact sets 
 
More odds and ends.

The discriminant test. Quadratic forms. LaGrange Multiplier
10 Summary #3 Due 10/29 10/26 Quadric Surfaces 13.6

Start Integration over rectangles 
More on Integration and iterated integrals
Fubini's Theorem.
11
What about 4 variables: 1-3, 3-1, 2-2 ? 
5 variables? 2-3, 3-2?
11/2 More on Integration and iterated integrals.
Beginning-basic properties.applications volumes. Integration over compact regions.
Average Value
The area problem.11.2(?)

More Integration over compact regions
Properties of integration in the plane.
Polar coordinates review.
Begin Integration with Polar Coordinates.
 
More integration with Polar Coordinates.
The integral of exp(-x2). 
 
Begin Cross products
More on planes and normal vectors with cross products.. 
12 Summary #4 Due 11/13
11/9 Cross Product 
Application to tangent plane.
More Integration in the plane.
Applications of integration in the plane and space to mass. .
Linear regression and "least squares."
13 Exam #2 Self Scheduled 11/17-11/18
11/ 16 Begin Integration in 3D. Cartesian coordinates 11/17 Applications of integration (mass, probability and means?) 11/19 Begin cylindrical and spherical coordinates No class- Furlough Day
14 Break
Thanksgiving Break  No classes
15Summary #6 Due 12/4
 11/30 Integration in Cylindrical and spherical coordinates  12/1 More work on integration and spherical coordinates.  
2-3 More work on integration and spherical coordinates.
12-4Vector fields and line integrals.
16  12/7  Integration Over curves. FT of calculus for line integrals.
 
More  Integration. Conservative fields.
More on conservative fields.
Green's theorem.

Briefly 2-3 visualized
More! Review.!?





17 Final Examination Self scheduled
Review Session:
Sunday 9:00AM- 10:50 PM
Come to BSS 308.
Sample Final Exam Questions will be available on Moodle by Dec 10.

Mon: 12/14
10:20 SH 128
Tues: 12/15
15:00 Art 27
Thurs.: 12/17
10:20 SH 128
Fri: 12/18
10:20 SH 128