Martin Flashman's Courses

Math 106 Calculus for Business and Economics
Fall, '00
Final Examination: Wednesday 12-20-00 12:40-14:40 or self scheduled
See Prof. Flashman
Checklist of topics for Final Exam

 MTRF 1300-1350 SH 128

Back to Martin Flashman's Home Page :)
Last updated: 8/29/00
Fall, 2000     Problem Assignments(Tentative as of 8-29-00)       M.FLASHMAN 
Section   Problems (*= interesting but optional; SC= Self-Check) 
-------   --------------------------------------
Assignments and Recommended problems I
8/29 ->  rev. sheet  Problems 1,2,4,6
8/31 -> 1.1: 1-23 odd; 45-51 odd;111,112,115,116, 121-124
8/31 -> 1.2: (i)1-4,13-15,23-25,33-36   
9/1  ->    (ii)53-55,65-67,89,95,99 
8/31 -> 1.3: 1-19 odd 
9/1  -> 1.4:(i)1-14;17,23,27-30,45,51,53     
9/5  ->     (ii)55-57,69,71,73,75,76,78
9/7 ->  rev. sheet  Problems 5,8
9/7 -> 2.1:  (i)SC:1-3; 1-5,9 (also draw T-figs to illustrate these functions);13,15,17,33
9/8 ->       (ii)35-45 odd (also sketch T-figs);59,62,63,67,69,73,*77
9/11-> 2.1T:  1-5 odd; 11, *43 
9/11 -> 2.3:(i)15-18;23,28,*30,31   
9/12     -> (ii)36,37,40,41,45,51,52
Assignments and recommended problems II 
9/14 -> 2.6:  2,3,5, *8
9/15 -> Read p 155-166. Do 2.6  19,13,21,27, 29, 31, 34, 51 
9/18 ->   2.6: 15, 16, 22, 30, 33, 39-41,51

     *2.6T:  1-9 odd
9/19 -> Read 3.1
9/21 -> 3.1 (i) 1-21 odd, 22, 27,30, 35, 36, *72
9/22    -> (ii) 41-43,46,49; 55,57, 62, 63
9/22 ->3.2 (i) 1-9 odd, 12, 31, 32, 39
9/25    -> (ii) 15-23 odd, 33, 37, 46
9/25   -> (iii) 49,51,54, 58
9/26 ->3.3(i) 1-9 odd;24,47
9/28    (ii) 29,31,,59,63,65,71,*75
9/28  ->3.4 (i)1-5
9/29    -> (ii) 11, 13,16, 17, 19
10/2 -> Read handout plus pp 221-225. 
   ->(iii) 23-27 odd,29,30
9/28 ->3.5  1-13 odd, 21-24, 29, 31, 32
9/29 ->3.6 (implicit diff'n) (i) 1,3,5, 9-11, 31
10/2 ->   (related rates) (ii) 15, *29, 39, 43-45,48
10/2 ->   (iii) 51,60
10/3 ->3.7 (i) 1-9 odd, 15-17, 27,29
10/5  ->  (ii) 34,36-39, 41,44
10/6   ->    2.4  1-9 odd
10/6  ->2.5 (i)1-19 odd,39,41
10/12   ->    (ii) 43-49 odd, 63, 71, 73, 76, 80
10/12   ->    pp 141-144 IVT & bisection   (iii) 87, 88, 93
10/16  ->  2.6 pp 167-169 "Diff implies cont" *57
    Assignments and recommended problems III
10/9  ->4.1   (i)1-7 odd, 13-17,21, 23, 44-47
10/10     -> (ii) 37-40,25, 27, 49- 57 odd
10/12    ->  (iii) 60-64, 72, 73, 77
10/13 -> 4.4  (i) 2,5,7,8,15,17,19,39, 41
10/16 ->   (ii) 19-31 odd ; 45,49, 52, *55
10/16 -> 4.5     (i) 1,3, 15 
10/17 ->         (ii) 5
10/20    ->  Read Example 5      (iii) 22
10/20 ->4.2  (i) 1-11 odd, 16, 23-27 odd
10/23 ->    (ii) 26, 45-49 odd, 75, 81
       
10/23 ->4.3 (i) 29, 30, 32,33,35, 37,43
10/24 ->    (ii) 40,45,65
10/26->    (iii) asymptotes: 1-15 odd,20-22, 61, 68
                 Assignments and recommended problems IV
10/24 -> 5.1  READ 374-376 (i) 1,4,7,10,13,16,19,22,25
10/27 -> (ii)27,29,31,32
10/30 ->   5.2    (i) 1-25 odd

10/31 ->      (ii) 20,22,27,29,31, 33-37 odd
10/31 -> 5.3 (i) 1-11 odd
11/2  ->   (ii) 13-23 odd
11/3  -> 5.4   (i) 1-17 odd,6,18, 29
11/6       -> (ii) 14,23,27,31,34,35,41, 45, 46
11/7             ->  (iii) 49, 54
11/6 ->    5.5  (i) 1-17 odd, 6,18, 29
11/7    ->   (ii) 4, 14, 35, 37, 47, 49, 53, 55
Optional  -> Handout problems on logs and exponentials.
11/9 -> 5.6   (i) 3,7,*9, 11, 15
11/10 ->       (ii) 9,12
 
11/13 6.1 -> (i) 1-19 odd
11/13     -> (ii) 23-30, 51-57 odd, 61
11/17  -> (iii)65, 67, 69, 79 
11/14  ->IV.E  1a,c; 3a,c; 5a,b; 13 a,b; 21

Assignment for 11/27: Read IV.F and 6.3 pp 466-471.
       Assignments and recommended problems V
11/28->  IV.F 1, 3, 7,9, 19, 21.
11/28 -> 6.4 (i) 5-11 odd
11/30 ->  (ii)10, 12, 23-29 odd
12/1     -> (iii) 19-22, 31-37 odd, 41-44
11/30 -> 6.2   (i) 1-13 odd
12/1  ->   (ii) 19-27 odd, 6,8, 51,53
12/4 ->        (iii) 45-47, 57, 59, 63
12/1 ->6.5   -> (i) [sub.] 1-11 odd
12/4      -> (ii) 2,4, 16, 29-33 odd
12/5      -> (iii) 41, 42, 43
12/5 ->6.6    area (i) 1-7
12/7      -> (ii) 9-23 odd, 35-37
12/8->        (iii) 27-30, 46

12/8-> 6.7   -> Read surplus 
12/14              (i) 1-7 odd
12/11      -> value   (ii) 9-17 odd
12/12  7.4   ->(i) 1-7 odd,15, 17, 19, 50
        -> (ii) 35, 37, 39
12/5->   8.1    (i)1-7 odd
12/7      -> (ii) 19, 20,25, 28,29, 35
12/8 -> 8.2  1-5,11-17 odd; 23-29 odd, 41,43
12/15->8.3   ->  21, 23, 25
12/15->      -> 1-7 odd

 8.4   -> 1,3,*16, *19
Tentative Schedule of Topics  (Subject to change) 9-7-00 
 
Monday
Tuesday
 Thursday Friday 
Week 1 8/28 Course Introduction 8/29 Numbers, Variables, Algebra Review 1.1&1.2 8/31 More Algebra review and The coordinate plane1.3 Begin Functions? 9/1 More Algebra review.
Lines 1.4 Begin Functions. 2.1
Week 2 9/ 4 No Class.
Labor Day
9/5 Begin Functions and models. 2.1 & 2.3 9/7 More Functions and Models. The fence problem: functions, graphs, technology. 9/8 Slopes, rates and estimation.
Week 3  9/11  The Derivative I 2.6
Motivation: Marginal cost, rates and slopes.
9/12 The Derivative II 2.6  9 /14 The Derivative II 2.6 9/15 More on the Derivative. Begin the Derivative Calculus I 3.1
Week 4 
Summary I due 9/22 
9/18 Calculus II 3.1 9/19 3.1 Justify Powers & Sums. 9/21 3.2 product rules
3.2 Justify product
9/22  3.2 quotient rule.
3.3 The Chain Rule 
Week 5
POW I due 9/29
9/25 3.3 Chain Rule 9/26 3.4 Marginal Applications 
3.5 Higher order Derivatives
9/28 3.6 Implicit Differentiation Related Rates 3.6  9/29 More related rates.
Week 6
Summary II due:10/5
10/2 Differentials 3.7  10/3 More on differentials. relative error. 10/5 Back-up: limits and continuity 2.4 & 2.5  IVT? 10/6 Begin First Derivative Analysis 4.1
Week 7
POW II due:10/13
10/9 More First Derivative analysis. 4.1 . 10/10 IVT.2.5 
Bisection Method
10/12 Optimization I 4.4 10/13 Review
Optimization I 4.4
Optimization II 4.5
Week 8
Summary III due: 10/16 
10/16 More optimization. 10/17 Second Derivative Analysis 4.2
More Optimization
10/19 Examination I 
(covers through 10/13)
10/20 More optimization and  Curves III 4.3
Week 9 
POW III due: 10/28
10/23 More on Concavity. Horizontal Asymptotes. 10/25 Vertical Asymptotes 10/27 Start Exponential and Logarithmic functions 5.1 10/28
Logarithmic functions 5.2 
Week 10 :
Summary IV due:11/3
10/30 Interest and value 5.3 10/31  more on interesr.Start derivative og exp. 11/ 2 Derivatives of exponentials 5.4  11/3 Derivatives of Logarithms 5.5 
Week 11 
POW IV
11/6 Logarithmic differentiation. 5.5 11/7 Models using exponentials 5.6  11/9 More models.   11/10  6.1 Begin Differential equations and integration
Week 12
Summary V
11/13 Euler's Method IV.E 11/14 Euler's Method  and Area 11/16 Examination II (covers from 4.1 to 6.1 ) 11/17 Finding area by estimates and using anti-derivatives.
Week 13
Thanksgiving Break
11/20 11/21 11/23 Thanksgiving 11/24
Week 14 11/27
The definite integral. 6.3 
FT of calculus I 6.4
11/28 Substitution 6.2  Applications 6.5 11/30 Substitution in definite integrals. interpreting defintie integrals. 12/1 More area/ and applications 6.5 &.6.6
Week 15
POW V Due 12/5
Summary V  Due 12/4
12/4 
Intro to functions of  2 or more 
12/5 More on areas. Functions of 2 variables: level curves, graphs. 12/7 
Partial derivatives. 1st order .
12/8Value 6.7
 2nd order partial derivatives. 8.2 
Week 16 (last week of classes) 12/11 Improper integrals and value. 7.4 12/12  Surplus 6.7 12/14  Extremes 8.3 (Critical points) 
Least Squares.
12/15
Misc.OtherApplications  LAST CLASS :)
Week 17 Final Exam Week 12/18 12/19 12/20 12/21
*Final examination may be self-scheduled M,T,W, or R. Contact Professor Flashman.
Math 106  CHECKLIST FOR REVIEWING FOR THE FINAL     M. Flashman                    * indicates a "core" topic.
         I.  Differential Calculus:

           A. *Definition of the Derivative
                Limits / Notation
                Use to find the derivative
                Interpretation ( slope/ velocity )

           B. The Calculus of Derivatives
               * Sums, constants, x n, polynomials
                *Product, Quotient, and  Chain rules 
                *logarithmic and exponential functions
                Implicit differentiation
                Higher order derivatives

           C. Applications of derivatives
                 *Tangent lines
                 *Velocity, acceleration, marginal rates (related rates) 
                 *Max/min problems
                 *Graphing: * increasing/ decreasing 
                           concavity / inflection
                           *Extrema  (local/ global) 
   Asymptotes
                The differential and linear approximation 

           D. Theory
                *Continuity  (definition and implications)
                *Extreme Value Theorem 
                *Intermediate Value Theorem

            E. Several Variable Functions
                  Partial derivatives. (first and second order)
                  Max/Min's and critical points.

  II. Differential Equations and Integral Calculus:

           A. Indefinite Integrals (Antiderivatives)
                *Definitions and basic theorem
                *Simple properties [ sums, constants, polynomials]
                *Substitution
        *Simple differential equations with applications

   B. Euler's Method, etc.
                Euler's Method
                *Simple differential equations with applications
        Tangent (direction) fields/ Integral Curves

           C. The Definite Integral
                 Definition/ Estimates/ Simple Properties / Substitution
                *Interpretations  (area / change in position/ Net cost-revenues-profit)
              *THE FUNDAMENTAL THEOREM OF CALCULUS - evaluation form
                  Infinite integrals 

           D. Applications
                *Recognizing sums as the definite integral 
        *Areas (between curves). 
         Average value of a function. 
                 Present Value.
                 Consumer Savings. 
 
 
 
 





     Martin Flashman's Home Page :) Back to HSU Math. Department :}

Fall, 2000                 COURSE INFORMATION               M.FLASHMAN
MATH 106 : Calculus for Business and Economics                MTRF 1300-1350 SH 128
OFFICE: Library 48                                        PHONE:826-4950
Hours (Tent.):  MTWR 10:15-11:30  AND BY APPOINTMENT or chance!

E-MAIL:flashman@axe.humboldt.edu           WWW: http://www.humboldt.edu/~mef2/
***Prerequisite: HSU MATH 42 or 44 or 45 or math code 40.



Back to Martin Flashman's Home Page :)