Martin Flashman's Courses
Math 241 Introduction to Linear Algebra
Fall, '01
MWF 12:00- 12:50 FH 177
Final Examination Self- Schedule... Click Here!

Back to Martin Flashman's Home Page :)
Last updated: 08/16/2001
 

-------   --------------------------------------

Assignments and recommended problems
Fall 2001
Read Section  Date Due Do Problems
(*= interesting but optional)
1.1 (2 by 2) 8-29 1,3,4,7
1.2  (matrices- 
unique sol'ns)
(i) 8-31
(ii) 9-5
(i) 1,2,5,7,8
(ii)10, 13
1.3 (Gauss-Jordan) Read for 9-5
(i) 9-7
(ii) 9-7
(i) 1,3,5
(ii) 7, 10, 12, 13, 15 a
1.4 (Applications) 9-10 1-5, 7, 8, 16, 17
2.1 (Matrix Arithmetic) 9-12 1,2

9-14 3-5, *7, 9, 13, 14, 15,19
2.2 (Properties) 9-17 1,2,5,7,18,21,23

9-19 20,27,28,30,31,*33,35
2.3 ( Symmetric Matrices) (i)9-21
(ii)9-24
(i)1-3,6-12,15
(ii) 21,23,27,28(a-c), *30
2.4 (Matrix Inverses) 9-17 read
9-19 (i)
9-21 (ii)
9-24 (iii)
(i)1,3,4,5,10
(ii) 11-16,20-22,24
(iii) 29,31
2.5 (Input-Output) 9-28 1-3
2.6 (Stochastic Models) 9-26 1,4,5,7,11,12,13 
3.1 Determinants  9-28 (i) (i) 1,2,12,14

10-1(ii) (ii) 6,10,11,17

10-3(iii)  (iii) 8, 18, 19
3.2  10-1 (i)
10-3 (ii)
10-5 (iii)
(i) 3,5,8
(ii) 2, 4, 14
(iii)12, 15,17,19
3.3 10-1(i)
10-3(ii)
(i)1-3
(ii)5,12
3.4 10-5 3,4,6a,10(a,c),15-17,20,21
4.1 10-8 1-3,5,9,11,15,16
4.2 10-8 READ only
10-10 (i)
10-15(ii)
(i)1-3,5,7,16
(ii)9,11, 12
4.3 10-10(i)
10-15(ii)
(i)2,4(a,b),6(a-c), 8(a-c)
(ii)16, 17,20,21
4.4 10-17 4,6 -10
4.5 10-19 1.3.5

10-22 6-8, 21

10-24 13,15,16,17,20
4.6 10-24 Read- 1,2(a,c,e),4,6(a,b), 7(a,b)

10-26 8-10
4.7 10/31 1-5,13,20

11/2  11,21-23,25,27,*28,*30,31(a,b)
6.1 10/31 Read pp284-286

11/2 2,5,6,8-10

11/5 15-17

11/7 19,20
7.1 11/7 6-11

11/9 19-22,24,25
7.2 11/12 8,9,11,13,15

11/30 (For discussion in class) 1,4,18-20,26,27(a,b),28,29,30

12/3 5,8,10,12-14,33,34,39

12/7 Read p337-339

12/14 22
7.3 11/12 1(a,c,e,g),2(a,b,e)

11/28 4,5(a-c),6,11,13, 16,18,21-23,25
5.1 11/30 READ!!!!

12/5 3,5,10,11,16A,*21,25,*30, *22,*32

12/7 26,28,35
5.2 12/5 1,3

12/7 4,5,12,23

12/10 7, 9,17

12/14 26,28,*23
6.2 12/7 Read 

12/10 8( a,b), 9, 10, 13
8.1 12/14 1,2,13
8.2 12/14 1,2,4
 
Tentative Schedule of Topics  (Subject to change) 8-26-01
 
Monday Wednesday
Friday
Week 1 8/27 Introduction and Motivation
Solving 2 by 2  systems.
8/29 Continuation: Introduction to matrices. 8/31 Being Systematic.
Week 2 9/3 Labor Day
No Classs
9/5 Gauss-Jordan Method using row operations 9/7 A discussion of proofs. Application to polynomial curve fitting
Week 3 9/10 Begin Vector-Matrix Arithmetic.  9/12 Inner product. 9/14 Properties of Matrix algebra. Matrix Inverse.
Week 4 9/17 More on Matrix Inverse. 9/19 Symmetric Matrices, Transpose,Trace Breath 9/21 Applications
Week 5 9/24.Stochastic Matrices. 9/26 Breath Begin Determinants 9-28 More on calculating determinants. 
Expansion by Minors
Week 6 10/1 Permutations and determinants, more properties of determinants,  10/3 Determinants, Products and Inverses 10/5  Vectors
Week 7 10/8 Subspaces, Linear combinations 10/10 Spanning and Linear dependence.Breath  10/12 Exam I covers material [8/27,10/5]
Week 8 10/15 Linear Independence 10/17 Basis 10/19 Dimension
Week 9 10/22 More on dimension. Rank of a matrix. 10/24 Rank. 10/26 Finish Rank
Week 10 10/29 Eigenvalue/vector of a matrix
Begin Abstract Vector Spaces and Linear Transformations: Motivation.
10/31 More Abstract Vector Spaces Examples. Subspaces/ Span/Lin. Indep./BASES 11/2 MORE.. breath.
Week 11 11/ 5 More VS examples. Start Linear Transformations. 11/7 More Linear transformations: T+aU, TU 11/9 Geometry of LT's; matrices and LT's
Begin Kernel and range
Week 12 11/12 Rank and Nullity.  11/14 1:1 and the Nullspace 11/16Exam II 
BREAK 11/19 No class No class No Class
Week 13 11/26 More on 1:1 and inverse functions 11/28 Begin Geometry and Lin. Operators 11/30 More Geometry and Transformations
Week 14 12/3 Inner products and more on transformations 12/5 Orthogonal Transformations - distance and Isometries 12/7 Orthonormal bases
Week 15 12/10 finish Orthonormal bases,  12/12 Orthogonal transformations, General inner product spaces.
Diagonalizable Matrices/transformations.
Applications of  diagonalization.
Breath & Review for Final
Back to Martin Flashman's Home Page :) Back to HSU Math. Department :}


Fall, 2001                                  COURSE INFORMATION  (Revised 12-14)        M.FLASHMAN
MATH 241                                             MWF12:00-12:50    GIST Hall 177
OFFICE: Library 48                                                                                     PHONE:826-4950
Hours (Tent.):  MWF 9:30-10:30  AND BY APPOINTMENT or chance!

E-Mail: flashman@axe.humboldt.edu         WWW: http://flashman.neocities.org/
***Prerequisite:MATH 205 or 210 (Allowed for Concurrent enrollment) (Permission given for three completed semesters or 4 quarters of Calculus)



Back to Martin Flashman's Home Page :)

Back to HSU Math. Department :}