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x

0.9 52.6315789474

0.99 5025.12562814

0.999 500250.1

1.1 47.619047619

1.01 4975.12437811

1.001 499750.1

Table 1 x 6 1

x

-0.9 2.77008310249

-0.99 25.2518875786

-0.999 250.250187625

-1.1 -2.26757369615

-1.01 -24.7518625777

-1.001 -249.750187375

Table 2 x 6 -1

Figure III.D.1 
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Graphs are powerful tools for understanding  relations between variables. As the last two
sections have shown, analysis of the first and second derivatives of a function can give insight
into the graph of a function. In those sections we considered primarily the information we could
obtain directly about the graphs. We answered such questions as: when is the graph increasing?
what is the concavity? where are any extreme values and points of inflection? This type of
information contributes to our understanding of other applications by the robust nature of a
graph to represent  relations. In this section we look at some other graphical features of functions
and their relation to the derivative.

Vertical Asymptotes. In our discussion of continuity in Chapter I.I  we met situations where
a function, f , fails to have a limit because it "blows up," i.e., the function value, f (x), increases
without bound as x approaches a specific number (from one or both sides). Physical situations in
which this type of functional behavior can be observed directly are not possible since we do not
have ability to measure unlimited large quantities. This
is a danger of graphing technology: it uses procedures to
create the illusion of a curve based on a large but still
finite sample of data. 

Caution is advised when approaching these enormous
but sometimes hidden holes in a graph.  Failing to notice
blowing up can lead to serious mistakes in the analysis
of a function. The first and/or the second derivatives can
help with this analysis and  graphing of functions near
these key points of discontinuity.

Example III.D.1. Consider 

which is not defined when x = -1 and x = 1. 
When x 6 1 (from either the left or the right) f(x)6 4.

See Table 1. On the other hand when x9-1, f (x)64. The
limit is just the opposite as x8-1, namely f (x)6 -4. See Table 2 and
Figure III.D.1.

The graph of f  is said to have vertical asymptotes at x = -1 and x
=1 because when x is close to these two points, f (x)6  ±4 . Visually
the curve of the graph appears to be getting closer and closer to the
vertical lines X = 1 and X = -1.

Now let's examine the derivative:[ Here we think of f as the product
of 1/(x+1)  and 1/(x - 1) .]2

.

The function f  has no derivative at x = ± 1 and has a critical point
at x = -1/3.  Here then is an analysis of f '(x):
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x

0.9 -10

0.99 -100

0.999 -1000

1.1 10

1.01 100

1 1000

Table 3

Figure III.D.2

Graph of 

                    
             f'(x)   ---T-----0++++++++++++T---------  T=undefined  
              )2))2))2))2))2))2))2))2))2)
                 -1   -1/3 0        1
        f  is  decr  decr  increasing  decr

               `  `   _    `

As x approaches the two points where f  is not defined the sign of f '(x) indicates precisely
how the function's values "blow up".

Thus as x8-1, the values of f  must be decreasing, so f (x)6 -4, while as x9-1, the values of f 
must be decreasing on the interval as we proceed well, so f (x) 6 4. The behavior of f  near 1 is
also consistent with the first derivative analysis. As x81 we have the values of f  are increasing
so f (x)64, while we see that the values of f (x) are decreasing on the interval (-1,-1/3) so as x91,
f (x)6 +4.

  In summary, this example illustrates that at a vertical asymptote the behavior of the function
can be analyzed using the first derivative to see how the function blows up consistently with the
increasing and decreasing behavior of the function.

You should pursue these ideas further on your own to write a description of precisely what
knowledge about the first derivative's sign does to help with the graphing of vertical asymptotes.

  For the sake of simplicity as well as variety, our analysis of these vertical asymptote
problems using the second derivative will look at a less complicated function. 

Example III.D.2. Let . See Table 3 and

Figure III.D.2. 
This function has a vertical asymptote at X = 1.

First we find that  and from this that

. 

An analysis of the second derivative here is illustrated
by the following figure. 

f''(x)----------T++++++++  T=undefined 
       ))2))2))2))2))2))2))    

       0        1
f is conc. down  conc. up

               
Certainly f ''(x) is not defined at x=1 only, while for x > 1, f ''(x) >0 and for x < 1 , f ''(x) < 0.

The fact then that f  is concave up on the interval (1,4) supports the shape of the vertical
asymptote with f (x)64  as x91 . Similarly that f  is concave down on the interval (-4,1) is
consistent with f (x)6-4  as x81.
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Figure 3Figure 4

h

-0.1 -0.464 -4.6416

-0.01 -0.215 -21.544

-0.001 -0.1 -100

0.1 0.4642 4.6415888

0.01 0.2154 21.5443

0.001 0.1 100

Table 4

Figure 5

Figure 6

Vertical tangent lines and Cusps. We
have seen that a function that is not
differentiable can still be continuous. One
example was the absolute value function
which has a graph that comes to an angular
point at (0,0). Not only is this function not
differentiable at 0 but its graph fails to have a
line that might be described as tangent at
(0,0). This situation is quite different for the

function . See Figures 3 and

4. Although it is not immediately obvious from the transformation figure,
when juxtaposed with the graph, the behavior of this function at 0 is quite
different in some ways from most functions we have studied so far with
the calculus. As x60, f (x)60, yet if we look at the graph of f  we see that
the Y axis appears to be a crossing tangent line. [This is similar to the way
the X axis is a crossing tangent to the graph of the graph of y=x  at (0,0).]3

Looking at the definition of the derivative interpreted graphically, we
examine the slopes of the secant lines between (0,0) and (h, f  (h)). m(h) =
f  (h)/h = h /h = h . So when h60, m(h) 64, and there is no slope that1/3 -2/3

would be suitable for a tangent line. This is consistent with the fact that
vertical line have no slopes. 

REWRITE: In terms of the motion interpretation of the derivative, an
object moving according to this rule would have an average velocity that
would be getting larger and larger without bound as the object approached the 0 position at time
0. Strange as it may seem in a very short time, say .001 seconds, the object will have a relatively
large distance  of .1 meters to travel to arrive at 0, giving an average velocity of .1/.001 = 1000
meters/second= 1 kilometer per second, which  seems quite speedy indeed! And the object will
travel ever faster and faster as it approaches 0.  Here is a situation where we can begin to
question the meaning and usefullness of trying to measure the average velocity in a physical 
context.

Returning to the graphical interpretation we can make sense of the increasing slopes of
secants without much difficulty. Not only are the secant slopes increasing without bound, but so
are the slopes of the tangents at points along the curve as they are taken closer to (0,0). More
importantly this is not difficult to recognize using the calculus. When

x�0, , so f '(x) >0 and as x60, f '(x)64.

Another example of a vertical tangent line is . 

See Figures 5 and 6. In this example we have another vertical
tangent at 0. Using the definition of the derivative interpreted as
the slope of the tangent line estimated by secant  line slopes is
not as clear in this example since these slopes are  large and
negative when x80, but large and positive when x90. Since the
magnitude of these slopes is getting large in either case, the
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vertical tangent issue is resolved by noticing that  as h60. Again this feature

can be recognized using the derivative of the function. We analyze the magnitude of tangent

lines slopes on the graph close to (0,0) with *f '(x)*. When x�0, , so as x60,         

*f '(x)*6+4. The first and second derivative analysis [ ] also helps in

understanding the shape of this section of the curve, usually described as a cusp. Look at Figure
5 again.

  f'(x)  --------T++++++++       T=undefined  
         ))2))2))2))2))2))
                 0        

  f  is  decreasing  increasing  

          `     _ 
  f''(x) ---------T--------      T=undefined  
        )2))2))2))2))2))2))
                  0        

  f  is  conc. down  conc. down

Horizontal Asymptotes and Behavior at Infinity: What happens in the long run.  It
doesn't take much thought or experimentation to understand that when the number x is very large
and positive, the value of 1/x is close to 0. In this very simple example are some key ideas for
understanding the behavior of a function at infinity as well as horizontal asymptotes for the
graphs of functions. The situation where x is very large and positive is sometimes written
symbolically as x > > 0 (read "x is much greater than 0") or x 64  ( read " x approaches
infinity"). The comparable case where x is very large and negative is treated similarly using
x<<0 and x6-4.

Now the question of what happens to the values of a function of x when x assumes very large
values whether positive or negative is usually called the analysis of the behavior at infinity.
Note that infinity in this usage is not a number, but refers only to the dynamic interpretation of
larger and larger values of x being considered without bound. If the controlling variable is
considered as time in an interpretation, then the question of how the controlled variable behaves
can be thought of as the question of "what will happen in the long run" for large values of x and
what happened "way back in time," before any history. For many functions there is no need to
use calculus to investigate these questions, just as no calculus was needed to recognize that 1/x
would be close to 0 when x >>0 or when x<<0. The analysis of the first and second derivatives
can in some cases allow us to understand a little more about this type of behavior. so let's spend
a little more time with f  (x) = 1/x for x�0 to see how this, and similar, examples can be enriched
by further analysis. Noticce that when x >0 , 1/x > 0, while f'(x) = -1/x  <0 for all x�0. So we2

have the function f  is decreasing for the intervals (-4,0) and (0,4). 
A continuous decreasing function bounded below will have a horizontal asymptote.
As our simple example of 1/x shows, the behavior of a function at infinity may be asymptotic,

meaning that as x gets large, the values of the function get close to some other quantity. In fact
for many simpler examples the analysis to find that limiting quantity follow a rather simple
thought process as the next example illustrates.
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Exercises III.D.
For problems 1 - 14, find the indicated limits as most appropriate when they exist.

1. lim   3x  + 4x + 1 2

  x6 -1      x + 1  

3. lim   3x  + 4x + 1 2

  x6 1      3x + 1 

5. lim    x  + 2x + 1 2

  x6 -1      x + 1 

7. lim    x  + 4x + 1 2

  x6 -1     x + 1  -

9. lim     3x  + 4x + 1 2

  x6 -1      x  + 1  3

11. lim    3x  + 4x + 1 2

   x6 -1      x  + 1  4

13. lim    3x  + x + 1 2

   x6 1      x - 1              +

2. lim    x + 4 x + 1 2

  x6 -1      x + 1 +

4. lim   5x  + 4x + 1 2

  x64     8x  + 10  2

6. lim   3x  + 4x + 1 2

  x64      6x  + 1              3

8. lim   3x  + 4x + 1 2

  x6-4     6x  + 1  2

10. lim   3x  + 4x + 1 2

  x64        6x + 1 

12. lim   3x  + 4x + 1 3

    x6 4   6x  + 2x + 8                                 3

     14. lim   3x  + 4x + 1 3

    x6 -4     6x  + 1 4

15. Find  lim  sin ( 2B x  + 4x + 1 ). 2

               x64             8x  + 10  2

16. Discuss the asymptotes of the function f  (t) = ( t  - 4 ) 2

                                                                                ( t  - 9 ) 2

   a) using the first derivative to analyze f  (t).

   b) using the second derivative to analyze f  (t).

17. Discuss the asymptotes of the function f  (t) = ( t - 4 )
                                                                              (t  - 9 ) 2

   a) using the first derivative to analyze f  (t).
 
  b) using the second derivative to analyze f  (t).

18. A function F is called a continuous probability distribution function over [a,4) if F is a

continuous nondecreasing function and F(a)= 0 while lim F(t) = 1.  
              t64   

Using this definition show that the following are continuous probability distribution functions

on [0,4).   
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a. F(t) =  1 - 1/(t+1).                  b.  sin(B/2 t/(t+1) ). 

19. a) Explain why if f  is an even function and lim f  (t)  = L  then                                      
                               t64      

lim f  (t) = L.                                   
t6 -4

b) Suppose f  is an odd function and lim f  (t) = L. Show lim f  (t)=-L.   
                                                          t64                        t64

20. We say that f  has g as an asymptote if lim [f(t) - g(t)] = 0.                               
                                                                   t64   

Show that  f  (x) =[ x  + 1 ] / x has g(x) = x as an asymptote. 2

21. Draw a transformation figure and a graph to explain  why 

 lim   f  (x) = 0 if and only if  lim   *f(x)* = 0.
x 6 4                                    x 6 4
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