
Ch. III.B   4/19/14 I.1

Write something here about the terms
local, global, relative and absolute with
regard to the common language
connections of the words to their use in
this technical setting.
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III.B.2 Analysis of Local ( Relative ) Extremes. 

Review of extremes: We have discussed the issues of extreme values for a function f previously
in section I.I.3. In that section we showed that for an extreme value of a (continuous) function to
occur at a point c inside an interval that point would have to be a critical point for the function, i.e.,
either f does not have a derivative at the point c or f '(c)=0. Even if the value of a function is an
extreme for an interval, it may not be the extreme value for the entire domain of the function. 

A point that is an extreme for a function when considered
for all points in the domain of the function is called a global (or
absolute) extreme point. 

A point that is an extreme for a function when considered
only for points inside some interval is called a local (or relative)
extreme point. 

You can think about the distinction between local and global extremes in the context of a simple
example like the tallest or shortest person or the highest or lowest temperature or greatest or least
probability density. A local extreme may not be the global extreme for the function for its domain,
but the global extremes of the function will be local extremes for the function as long as they are
located inside some interval of the domain. To consider just one of the examples just mentioned, the
tallest (or shortest) person in a room- a local extreme- may not be the tallest or (shortest) person in
the United States or the world! - a global extreme, while the tallest (or shortest) person in the world
will certainly be the tallest (or shortest) person as a member of any collection of people. 

If the global extreme occurs at the endpoint of an interval in the domain, it is sometimes described
as a boundary or endpoint extreme. The boundary extremes are usually distinguished from local
extremes because they can be more sensitive to information that may extend a function beyond its
current domain. For example, if f(x)= x  + 3 on the interval [1,5], the extreme values for the function2

occur at the endpoints 1 and 5, yet if the function is extended to a longer interval [0,6] the extremes
would happen at 0 and 6. This instability would not be present for local extremes since their
properties are determined by an open interval in the domain and thus their property of being a local
extreme is not altered in any enlargement of the function's domain.



Ch. III.B   4/19/14 I.2

Something to think about: We

can define two functions giving

the maximum and minimum

value of a function that depend

on a function and the endpoints

of the interval for which the

function is determined. For

example we could fix the

function as f(x)= x and the2 

interval [-2, b] where b>-2. Then

max(b)= 4 for -2< b # 2 and b2

for b >2 while min(b) = b  for b2

# 0 and 0 for b >2. Thus with b >

-2 for any interval [-2,b] the

point b will be a boundary

maximum when  2#b  and a

boundary minimum when b#0.  

The values of local extremes will

appear on the graphs of "max"

and "min"  as intervals where

these graph appears constant

while boundary extremes will

appear as sections where the

graph is steadily increasing or

decreasing.
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Figure 1

Interpretation: On the graph of a continuous function, the local
extreme points are visibly prominent since they appear as the
points at the top of hills or the bottoms of valleys. In other words,
the function will be either increasing shortly before reaching this
point and then decreasing afterwards, or vice versa. On a
transformation figure visualizing motion the local extremes are
points in time where the position function changes its direction.

Determining the local extremes of a function: Since a local
extreme occcurs inside an interval, the Critical Point Theorem of
Chapter I.I.3 can be applied to find the local extremes of a function
f. Local expremes can occur only at the critical points. So to find
local extremes for f , the sensible thing to do is find the critical
points of the function f. Though this is not always an easy task, the
derivative calculus usually make finding the derivative, f', a
mechanical task in applying the rules. The more difficult part of
finding the critical points is solving the equation, f'(c)=0,that
characterizes these points. After finding the critical points, the
local extreme problem is reduced to determining which of the
critical point is a local extreme and what kind (max or min) is it.

The following tests based on analysis of the first derivative can
be used to determine the behavior of a function at a critical point
inside an interval for local extremes. From the remarks about interpretations, these tests should seem
sensible.

Theorem III.*** (The First Derivative Tests for Local Extrema): 
If c is a critical point for f inside an interval I and when x < c , f '(x) < 0 while when   x > c, f '(x)

> 0 then c is a (local or relative) minimum point for f . If c is a critical point for f inside an interval
I and when x < c , f '(x) > 0 while when   x > c, f '(x) < 0 then c is a (local or relative) maximum
point for f. 

We can visualize these situations with first derivative analysis as we did in the examples earlier
in this section.
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Figure 2

Notice that there are two cases where a critical point is not a local extreme. These are when f '(x)
>0 for x close to, but not equal to, the critical point  (in which case the function is increasing on the
interval including the critical point) and when f '(x)<0 for x close to, but not equal to, the critical
point. 

Example: These situations are exemplified by the function f(x) = -x +1. here f '(x)= - 3x  so f3 2

'(x)=0 only when x = 0 and otherwise f '(x)<0. Thus although x=0 is a critical point for f, f does not
have a local extreme here. f is decreasing o its domain of all real numbers. The graph of f and the
transformation figure both some meaning to the situation. It is comparable to riding a rolloer coaster
that seems to be leveling off after a steep incline and just when you think you are going to level off
fully the track proceeds downward again in an almost unpredictable fashion. Ina way, the leveling
off is the critical point, and the unpredictable direction is the fact that both a positive or a negative
derivative are consistent with the zero derivative at the critical point.

 From the derivative analysis or the test it should be clear in

 1  2Figure 2 that m  and m  are local minimum points while M is a
local maximum point.  Here is Figure 2 again to illustrate the
graphical features of these relative extrema.

III.B.3. The Mean Value Theorem. 
Theorems P and N seem so sensible from the various

interpretations and examples that you may feel that they need no
further justification. One of the features of mathematics that
distinguishes it amongst the sciences as a discipline is logical
connections and structures that relate many statements in
mathematics. The ability to logically derive many results from a
small list of statements has always made mathematical structure more convincing because of the
ability to build on a foundation of a few statements that can be accepted or verified through some
experience which is credible. The foundations of calculus have been built in several different ways
over the history of mathematics. One widely accepted approach developed in the eary 19th century
by the French mathematician Augustin Cauchy (1789–1857) used the Mean value theorem as the key
to justifying most of the results of the calculus known at that time. The next two theorems are in fact
equivalent in the sense that each can be proven without much difficulty assuming the other is true.
They are the most important theoretical tools used for the study of functions based on derivative
analysis. After stating the results we will look at their interpretations to see why they make sense
before providing a proof based on the extreme value theorem and the critical point theorem from
Chapter I.I. In the concluding part of this section we will apply the Mean Value Theorem to justify
more rigorously (prove) the results of first derivative analysis of increasing and decreasing functions.

Theorem III.B.***. The Mean Value Theorem: (MVT) 
If f is continuous on [a,b] and differentiable on (a,b) then there is some p where a < p <  b and

        f '(p) = [f(b) - f(a)] / [b-a]  
or  f(b) = f(a) + f '(p) [b-a].
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Figure III.B.7

We call this theorem "P" to help recall
the visual connection between a Positive
derivative and the graph of the function
or the values of the function both moving
uP.

Figure 4

Interpretations: 1. Motion. Suppose f(t) is the position of an
object moving continuously over a time interval [a,b] with a
velocity at every moment between time a and b.  The MVT can be
interpreted in this situation as meaning that at some moment in
time c between time a and b the instantaneous velocity of the
object will be equal to the average velocity of the object over the
interval [a,b]. 

2. Graphical. Consider the graph of the function f over the
interval [a,b]. The MVT can be interpreted in this situation as
meaning that for some c between a and b, the slope of the tangent
line at that point will be equal to the slope of the (secant) line between the end points of the graph
(a,f(a)) and (b,f(b)). To express it geometrically, at some point on the graph of f the tangent line will
be parallel to the secant line determined by the endpoints. See Figure III.B.7.

3. Economics. Suppose P is a differentiable profit function for producing a commodity measured
by the variable x at levels of production between a and b. If the average profit per additional unit

*of production for this range of production is P  then the MVT can be interpreted to mean that at some

*level of production between a and b the marginal profit will be P .
4. Probability. Suppose F is the probability distribution for a continuous random variable X.

When F is differentiable for X between A and B the MVT means that the average probability density
that X is between A and B is equal to the point probability density of X at some point C between A
and B.

5. Estimates. In considering estimates of f(b) based on f(a), there is a point c between a and b
where the differential at c using dx=b-a, df(c,b-a) = f'(c) (b-a), will be precisely the difference, f(b) -
f(a). Thus for example, if the values of the derivative of f between a and b are always greater than
f'(a), then the differential at a will be less than the differential at c, and thus underestimate the
difference f(b)-f(a). In other words, f(b)-f(a) > df(a,b-a) and so f(b) > f(a) + df(a, b-a).

III.B.4. Application of the MVT to first derivative analysis.
  
Let's defer the proof of the Mean Value Theorem till later and see

how we can use it to justify Theorem P, i.e., if the derivative of a
function is positive on an interval then the function is increasing on
that interval. [We'll leave the proof of theorem N for the reader to
supply by following the argument for Theorem N.]

Proof of Theorem P: Recall the hypothesis of Theorem P is that
f'(x) > 0 for all x in the interval I. To show that f is increasing on the
interval I we consider two distinct points, a and b, in the interval. For
convenience we will assume that a < b. What we want to show is
that  for these arbitrarily chosen points, f(a)<f(b). See Figure ***.
Since f is assumed differentiable on the interval I, f is continuous on
[a,b] and differentiable on (a,b). We apply the MVT to f on [a,b] to
say there is some c in (a,b) {and hence in I } where 
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  f'(c) = [ f(b) - f(a) ]/ (b-a).
In other words f(b) = f(a) + f'(c) A(b-a). 
From the assumptions , f'(c) > 0 and  b - a > 0 , so in the last expression it must be that f'(c)A(b-

a)>0 , so  f(b) > f(a).
In summary, if a < b in I  then f(a) < f(b), so f is an increasing function on I.

EOP
Interpretations of the argument in the proof of Theorem P: 
1. Motion. If the instantaneous velocity is always positive, then the average velocity must be

positive (MVT)  for any interval, which means the position is increasing when compared at any two
points in time. 

2. Graphical. If the slopes of the tangent lines are always positive, then the slope of any secant
line must be positive (MVT) and hence the graph of the function is always rising between any two
points on the graph.

3. Economic. If marginal profit is positive at any level of production in the interval, then for any
increase in production the average profit per unit increase will also be positive and so the profit will
also increase.  

It is now time to prove the Mean Value Theorem.
Proof of the Mean Value Theorem:  The idea of this proof can be thought of graphically as

comparing the function f with the linear function that passes through (a,f(a)) and (b,f(b)) and has
slope [f(b) - f(a)]/(b-a). For the remainder of the argument we will denote the slope by M. We
consider the difference of these two functions and notice from the figure which we use to visualize
the situation that this difference seems to be greatest precisely at the point where the tangetn line is
parrallel to the secant line. To discuss the difference we let 

g(t) = f(a) + M  (t - a) - f(t) for all t in [a,b].  .

Since f and the linear function are continuous on [a,b] and differentiable on (a,b), g is  continuous
on [a,b] and differentiable on (a,b) as well. By the continuity of g we can apply the extreme value

 *theorem to say that for some c  and c  in [a,b] we have extreme values for g on the interval. If either *

of these points is inside the interval then we can apply the critical point theorem to g to say that g'(c

 *) = 0 or g'(c )= 0.*

But when we compute we find g'(t) = M - f'(t).  Thus we have either M - f'(c ) = 0, in which case *

 *  *  *f'(c )= 0, or M - f'(c ) = 0,  in which case f'(c ) = M. This means that if either c  or c  are in the open *  *

interval (a,b) the theorem's conclusion is satisfied. This leaves only the case when the endpoints, a
and b are the points where the extremes of g  occur.  Now we evaluate g at these two points. 

           g(a) = f(a) + M  (a - a) - f(a) = 0    while .

g(b) = f(a) + M  (b - a) - f(b)  .

                                          = f(a) + [f(b)-f(a)]/(b-a)  (b - a) - f(a) = 0. .

But if both the maximum and minimum values of g are 0, then 
g(t) = 0 for all t in [a,b].

Looking back at the definition of g, we see that in this case the last equation means that f(t)=f(a)
+ M . (t - a) for all t in [a,b] . Thus we conclude that in this case f'(c) = M for not just some, but for
any c in [a,b]. 
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Figure 5

  In summary , we see that in any case the conclusion of the Mean Value Theorem is satisfied at
some point c in (a,b).      EOP 

The next theorem is sometimes proven before the Mean Value Theorem even though as you can
see it is merely a special case of the MVT.

Rolle's Theorem: If f is continuous on [a,b] and differentiable on (a,b) and f(b) = f(a) then
there is some p where a < p <  b and f'(p) = 0  .

Proof of Rolle's Theorem assuming the MVT:  In Rolle's theorem the assumptions of the MVT
are all assumed along with the added assumption that f(b) = f(a) . This last assumption implies that
f(b) - f(a) = 0 , so by applying the MVT to f gives the claimed result.

Interpretations: 1. Motion. Suppose f(t) is the position of an object moving continuously over
a time interval [a,b] with a velocity at every moment between time a and b. The assumptions for
Rolle's Theorem also assume that f(a) = f(b), i.e., from the point of view of motion at times a and
b, there seems to be no change in position. Rolle's Theorem can be interpreted in this situation as
meaning that at some moment in time c between time a and b the instantaneous velocity of the object
will be equal to 0, i.e. , at the instant c the object appeared to be stopped. 

2. Graphical. Consider the graph of the function f over the
interval [a,b]. Here the assumption that f(a) = f(b) means that the
secant line between (a,f(a)) and (b,f(b)) is horizontal with its slope
0. Rolle's Theorem can be interpreted in this situation as meaning
that for some c between a and b, the slope of the tangent line at that
point will be 0. To express it geometrically, the tangent line will be
horizontal at some point on the graph of f . See Figure ***.

3. Economic. If the profit at two levels of production, a and b,
are equal, then at some level of production between those a and b,
the marginal profit is 0.

Exercises III.B. 
In exercises 1-6, for each of the functions find  the intervals where the function is increasing and

decreasing.
1. f(x) = x  - 4x +  3  2

2. f(x) = 2 x  + 3 x  + 4  3  2

3. g(t) =  t  - 3 t + 4  3

4. g(t) =  sin(t) + %3 cos(t)
5. r(s) = s + 1/s 
6. p(x) = x  - 2 x  +  2 4  2

For exercises 7-12, for each of the functions in exercises 1 - 6, find the local extreme points and
values. Use this information together with the original information found in those problems to sketch
the graphs of these functions. If possible , compare your results with the graph from some graphing
calculator or computer graphing system.

13. Use the first derivative to graph  the following functions, giving the coordinates of any (local)
extremes:

a. f(x) =  x + 2 sin(x)   b. f(x) =  x / (x  + 1) 2

14. Suppose f(x) is differentiable  and f'(x) = 0 only when x = 2 and 4. Describe all possible
shapes for the graph of f. Explain your reasoning and give an example of such a function.

15. Explain why a cubic polynomial can have at most two local extrema.
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16. Explain why a quartic polynomial can have at most three local extrema.
17. Generalize your results in exercises 15 and 16 to polynomials of degree n. Explain.
18. Find all the local extreme points for the sine function. Explain why the sine function cannot

be a polynomial function. 
19.Project. A function f is called an even function if f(-x) = f(x) for all x in its domain. Discuss

the implications of f being an even function for the transformation figure and the graph of f.
Suppose  0 < a < b . 

Prove that if f is differentiable and  an even function then f is increasing on the interval (a,b) if
and only if f is decreasing on the interval (-b,-a).

20.Project. A function f is called an odd function if f(-x) = -f(x) for all x in its domain. Discuss
the implications of f being an odd function for the transformation figure of f and the graph of f.
Suppose  0 < a < b . 

Prove that if f is differentiable and  an odd function then f is increasing on the interval (a,b) if and
only if f is increasing on the interval (-b,-a).
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