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CAVEAT: (Warning!) It is all too

easy to think that the derivative of

the product is the product of the

derivative. This is not true, as

Example II.A.1. illustrates. The rule

for finding quotients is also not

simply to find the quotient of the

derivatives. Don't be trapped by

thinking that everything in the

calculus is simple. The rules for

products and quotients are not hard,

and they make sense, but that doesn't

mean they are as easy as the linearity

rules. 

II. The Calculus of The Derivative

In Chapter I we learned that derivative was the mathematical concept that captured the
common features of the tangent problem, instantaneous velocity of a moving object, marginal
concepts in economics, and the density function of a random variable as well as rates in general.
As important as the derivative is conceptually,  the power of the derivative for applications
comes as well from the fact that there is a method for finding the derivatives of functions
expressed in fairly complicated formulae. We have seen some of this power already in the
linearity properties demonstrated in I.F. 

The method for systematically finding derivatives is described as the calculus of derivatives
or the differential calculus. The object of developing this calculus for mathematicians and
scientists of the 17th, 18th and 19th centuries was to make computations easier by being  more
mechanical and therefore requiring less thought. With rules and procedures that worked because
of the form of a suitably posed problem , the calculus user can spend more time on recognizing
applications and modelling, developing settings appropriate for the calculus, and taking calculus
results back to applications to see that they make sense. The calculus can free the user from the
drudgery of complicated and often forgotten arguments by allowing the form of a problem to
drive the search for a content solution.

II.A. The Product And Quotient Rules 

Finding the derivatives for polynomials turned out to be fairly
straight forward because of the "linearity" properties of the derivative.
Unfortunately finding the derivatives for functions expressed as
products and quotients is not so simple. In this section we will learn the
calculus  procedures for finding the derivatives of functions expressed
with products and quotients. The next example illustrates that these
rules are not as simple as linearity.  

Example II.A.1: Find P'(0) when P(x) = (x  + 5x - 3)(7x  + 11x + 9). 2  2

Solution: First we'll have to multiply the factors of P(x) to express P
as a polynomial in a standard form for differentiation.  

                  P(x) = 7x  + 46x  + 43x  + 12x - 27 4  3  2

Thus  P'(x) = 28x  + 138x  + 86x + 12  and P'(0) = 12.  3  2

Notice the factors of this polynomial have derivatives

  and 

.

 No simple formula combining 5 and 11 seems to give the result of 12.

Products of Linear Functions: In the graphical interpretation of the derivative we can
consider the derivative of a function f at a as the slope of the tangent line. This line is also the
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Figure 1

linear function that best approximates f at a and its slope is the coefficient of the variable "X" in
the linear function. With this point of view the following example using linear functions as
factors may help you understand the product rule.

Example II.A.2: Find Q'(0) when 
Q(X) = (mX + b)(nX + c) = mnX  + (mc +nb)X + bc.   2

Solution: Here Q is the product of the two linear functions,
f (X) = mX + b and g(X) = nX + c.  Note that f (0) = b, g(0) = c,  f '(0) = m and g'(0) = n.

Clearly, Q'(0) = mc + nb = f '(0) g(0) + g'(0) f (0). 

Example II.A.1 (again): Consider P(X) = f (X) Ag (X) where 
f (X) = X  + 5X - 3 and g(X) = 7X  + 11X + 9.  2  2

The linear function best approximating f at 0 is 5X - 3 and for g at 0 it is 11X + 9. [Check
this.] We look for the derivative of the product of these two linear estimators as a candidate for
P'(0). 

From the last Example II.A.2, the derivative of the product of the two linear estimators is
given by f '(0)g(0) + g'(0)f(0) = (5)(9) + (11)(-3) = 12. Pretty remarkable! As was shown
previously, this number is precisely  P'(0). In a roundabout way  we have connected P'(0) to the
factors f and g.  

The Product as an Area: The next example gives a dynamic interpretation recognizing the
product of two functions as an area. This approach gives another way to think about the
derivative of a product. It provides the key visual tool for understanding the algebra we'll use to
understand the rule for finding zderivatives of products.

Example II.A.3: Consider a rectangle where the length of
the sides varies with time. At time t its length is f (t) and its
width is g(t).  Thus the area of the rectangle P at time t is
determined as a product: P(t) = f (t)Ag(t). Assuming f and g
are differentiable at time a, find P'(a).  

Solution: To determine an estimate of the derivative of P

at time a, we consider the difference quotient . 

Assuming h > 0, this can be thought of as the average rate of
change of area over the time interval [a, a+h]. Now consider
Figure 1 which visualizes the case where both f and g have
increased during the time interval. 

As usual we will organize the work of analyzing the expressions in the difference quotient 
using four steps:

Step 1: From the definition of P(t) as the area determined by P(t) = f (t)Ag(t), we have  
P(a+h) =  f (a+h)Ag(a+h)

            P(a)      =  f (a)Ag(a) . 
Step 2: [Subtract ]    P(a+h) - P(a) = f (a+h)Ag(a+h) - f (a)Ag(a) 
In the figure, the unshaded region has area P(a+h)-P(a). The figure shows this region 
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composed of two distinct rectangles, leading to the algebraic equation

Step 3: [Divide by h.] 

This equation is true for all small h (positive or negative).  

Step 4:[Think] As h 6 0, and (since f and g are

differentiable at a). It should also make sense that f (a+h) 6f (a). [This was justified in our
previous discussion in Chapter I.I  showing that “differentiability implies continuity.” See ###]
Thus, it should make sense that

 6 f  '(a)Ag(a) + g'(a)Af(a).

By following the four step analysis of the difference quotient required by the definition of the
derivative, we have found that  P'(a) =  f  '(a)Ag(a) + g'(a)Af (a).  

   We conclude these remarks with a statement of the Product Rule.
Theorem II.1:(The Product Rule.) Suppose that f and g are differentiable functions at a and

that P(X) = f (X)Ag(X) for all X. Then P is differentiable at a and P'(a) is determined by the
equation 

P'(a) = g(a)Af '(a) + f (a)Ag'(a).
In the operator notation this is written 

DP(a) = g(a)ADf(a) + f (a)ADg(a).
In the Leibniz notation, variable names replace function names: 

y replaces P(X),  u replaces f (X) and v replaces g(X). The product rule is written as

.

Proof (Outline): The algebraic and limit arguments given in Example II.A.3 are valid under
the hypotheses of the theorem.          EOP.  

Example II.A.4: Suppose P(x) = (x  - 5x  + 8x - 9)(6x  - 2x + 6). Find P'(1).   3  2  4

Solution: We let  f (x) = x  - 5x  + 8x - 9 and g(x) = 6x  - 2x + 6 so that P(x) =  f (x)Ag(x) for all3 2 4

x and the product rule can be applied. 
To begin applying the rule we find f '(x) = 3x  - 10x + 8  and g'(x) = 24x -2. 2 3

So we calculate easily: f '(1)=1 , g'(1) = 22, f (1) = -5, and g(1) = 10. Hence by the product
rule 

                    P'(1) = g (1)Af  '(1) + f (1)Ag '(1)
                           =  (10)A(1) + (-5)A(22) = -100. 

Example II.A.5: Suppose P(x) = e  (x  + 5x). Find P'(x).x 3

Solution: We let  f(x) = e  and g(x) = x  + 5x so that P(x) = f  (x)Ag(x) for all x and the productx 3

rule can be applied. We find f '(x) = e   and g'(x) = 3x  + 5.  So we apply the product rule:x 2

P'(x) =    g(x) A f '(x) + f(x)A g'(x) 
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         = ( x  + 5x )e    +   e   ( 3x  + 5 )3 x x 2

         = e ( x  +3x  + 5x + 5 ).x 3 2

Example II.A.6: Suppose P(x) = x sin(x). Find P'(x).
Solution: We let  f(x) = x and g(x) =sin(x) so that P(x) =  f  (x)Ag(x) for all x and the product

rule can be applied. We find f '(x) = 1  and g'(x) = cos(x)  So we can calculate easily  by the
product rule 

                    P'(x) =  g(x) A f '(x) + f (x)A g'(x)  = sin(x)+ x cos(x).

Example II.A.7: Suppose   (x =/  0).  Find DP(x).

Solutions: We will solve this problem with three different approaches - each illustrating a
different character of the rules.

A. [Algebra] This problem can be done without the product rule by noticing that from
elementary algebra: P(x) = x + 3/x so that DP(x) = 1 - 3/x .   2

B. [Product Rule] We apply the product rule using the fact that .

 DP(x) = D[(x  + 3)(1/x)] = [D(x  + 3)](1/x) + [D(1/x)](x  + 3)                  2  2  2

                              =     [2x] (1/x) + [-1/x  ](x  + 3) 2  2

                              =         2  + (-1 - 3/x ) 2

                              = 1 - 3/x . 2

C. [Wishful Thinking.] Let's assume that P(x) has a derivative for a moment. 
Certainly we can say that xAP(x) = x  + 3. 2

We let f (x) = x AP(x) = x  + 3.2

Then we have two ways to find f '(x) using the two different expressions.  
First use f (x) = x  + 3 so f  '(x) = 2x. 2

But using the product rule on f (x) = x AP(x)  we have that  f  '(x)= xAP'(x) + P(x).  Since the
derivative for f  doesn’t depend on how we express the function, we have 2x = xAP'(x)+ P(x).

Now we solve for P'(x):  2x-P(x) = xP '(x), so P '(x)=  2 - P(x)/x.
Replace P(x) in the last expression with its algebraic form and we find 

P'(x) =  2 - (x  + 3)/x  = 1 - 3/x . 2  2  2

Comment on Derivatives of Reciprocals: 
The last [Wishful Thinking] method illustrates an interesting and important aspect of the

calculus. It is one thing to show that a function is differentiable and a related but not necessarily
equivalent thing to find the derivative. We will discuss this in greater depth later in this chapter.
For now let's use this idea to speculate on what would be the  appropriate formula for functions of
the form 1/Q(x) by assuming these functions are differentiable.  

Consider R(x) = 1/Q(x). 
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Then 1 = R(x)AQ(x) and we use the product rule on the function f (x) =1= R(x)AQ(x) to see that
0 = R'(x)AQ(x) + Q'(x)AR(x).

Solving this for R'(x) we obtain .

Remember that we assumed that R had a derivative. We still need to prove that R has a
derivative, called the reciprocal rule, using the derivative definition. 

Theorem II.2: (The Reciprocal Rule) If  R(x) = 1/Q(x)  when Q(x) =/  0 and Q is differentiable

at a, then R is also differentiable at a  and .

In the operator notation this is expressed as .

In the Leibniz notation, variable names replace function names: 

y replaces R(X) and v replaces Q(X), so . 

The rule is written .

Proof:  We need to consider the difference quotient  as x 6 a . 

As usual we will organize the work of analyzing the expressions in the difference quotient 
using four steps:

Step 1: From the definition of R(x) we have  
R(x) = 1/Q(x)

            R(a) = 1/Q(a)               

Step 2: [Subtract ]    R(x)-R(a)  = 1/Q(x) - 1/Q(a) 

                                            = 

                                            = 

Step 3: [Divide by x-a.] = .

This equation is true for all x close to but not equal to a.

Step 4:[Think] Since Q is assumed differentiable at a, as x 6 a, and [Q(x) - Q(a)]/[x-a] 6 Q'(a)
(since Q is differentiable at a) and it should also make sense that Q(x) 6 Q(a). 

[Again, this was justified in our previous discussion in Chapter I.I  showing that
“differentiability implies continuity.” See ###] 
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Thus, it should make sense that 6 .   

By following the four step analysis of the difference quotient required by the definition of the

derivative, we have found that R is differentiable at a and . 

EOP

Example II.A.8. We will use the reciprocal rule to justify the derivative formula for power
functions with negative integer exponents. 

First , to illustrate the algebra involved, let's consider  P(x) = x  = 1/x . Using the reciprocal -7  7

rule with Q(x) = x  we have  7

P '(x)= -7x  / (x )  = - 7 x . 6  7  2  -8

In general: If P(x) = x  where n is an integer, n<0 , we let k = -n which makes k a positive n

integer and P(x) = x  = 1/x .- k  k

Using the reciprocal rule with Q(x) = x  we have  k

                P'(x)= - k x  / (x )   k-1  k  2

                     = - k x  / x    k-1  2k

                     = - k x    k-1-2k

                     = - k x    =  n  x . -k-1  n-1

Comment: We can also find the derivatives of some other frequently encountered functions
with the reciprocal rule. Among these are the secant and cosecant functions from trigonometry as
well as e . These are left as exercises for you to gain further experience with this rule. -x

Example II.A.8. Here is a more complicated example that puts together the product rule and
the reciprocal rule to find the derivative of a quotient of polynomials.

Suppose . We express this quotient as a product of a polynomial and a

reciprocal, so 

.

Let R(x) = 1/(5x -2x+3) so that R'(x) = -(10 x-2)/(5x -2x+3)  from the reciprocal rule.  Now 2  2  2

G(x) = (x  - x + 4)AR(x) so we can use the product rule to find that  2

G'(x) = ( 2x - 1)AR(x) + (x  - x + 4)AR'(x)  2 

= .

Place this expression over the common denominator of (5x -2x+3)  to obtain 2  2

           =   .        (II.A.#)
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This last example can be generalized to give a derivative rule for any function that is
expressed as a quotient of differentiable functions, i.e., a Quotient Rule. Here it is.

Theorem II.3: (The Quotient Rule) If , when Q(x) =/  0 and P and Q are

differentiable at a, then G is also differentiable at a and .

 

In the operator notation this is expressed as .

In the Leibniz notation, variable names replace function names: 

y replaces G(X), u replaces P(x) and v replaces Q(X), so . 

The rule is written .

Proof: Our argument here follows the idea of the previous example using the product and
reciprocal rules together. 

G(x) = P(x)A1/Q(x) so using the reciprocal rule to find the derivative of R(x)= 1/Q(x) and the
product rule gives 

               G'(a) = R(a)AP'(a) + P(a)AR'(a)
                     = [1/Q(a)]AP'(a) + P(a)A[-Q'(a)/Q(a) ] 2

So . EOP

Review of Example II.A.8 This example showed precisely how the general proof was derived.
Here is how the quotient rule works to find the derivative of

  . 

We'll use the Leibniz notation. 

Let u = x  - x +4 and  v = 5x   -2x + 3.  Then  and   So applying the 2  2

quotient rule we have

=
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Figure 2

Example II.A.9. Suppose .  Find  and .

Solution: We use the Leibniz notation. Let u = x  - 1 and  v = x  + 1. Then  and 2  2

.  So by the quotient rule we have that   

Thus .

Comments: 1. If the example had asked only for I would have evaluated the expressions

before simplifying the algebra. [It's easy to make algebra errors; it's easier to find arithmetic

errors.] Thus after finding   I would replace  x with 2 to obtain

 .

2. The use of Leibniz (or operator) notation makes it unnecessary to name all expressions
explicitly as functions. In the last example, after identifying the numerator and denominator in

the quotient we could proceed directly to write the derivative .

3. In Figure *** is a graph of the function in the last example together with
the  line tangent at the point (2, 3/5).  Our solution does seem to make sense
when interpreted as the slope of this line.

4. An interpretation of a reciprocal rule using mapping figures is an
enlightening exercise in recognizing R(x)=1/Q(x) as the result of first finding
Q(x) and then finding its reciprocal 1/Q(x). See Exercise II.A.14.

5. The derivative of the secant, tangent, cosecant and cotangent functions
from trigonometry can all be found either directly from the definition of the derivative or from
the reciprocal and quotient rules. See Exercises II.A.16, 17, and 18.
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Exercises II.A. In problems 1 - 6 find the derivative as indicated. 
1. f(x) = (x  + 5) (x  - 6x  + 4x - 6) . Find f '(x) and f '(1). 2  3  2

 t  t2. g(t) = t (t  - 2t  + 5) (t  + 3). Find D g(t) and D g(1).   4  3  2

3. P(u) = (u  - 2u) u  . Find P'(x) and P'(1). 2  .5

4. . Find Q'(x) and Q'(1).

5. . Find R'(t) and R'(1).

6. S(t) = t  + 2t  - 4t + 8 and R(t)=1/S(t). Find R'(t) and R'(-1). 5  3

7. Suppose P(x)=Q(x) G(x) and that Q and R are differentiable at a. Use the product rule and . 

algebra to derive the formula for G'(a) as in the quotient rule of Theorem II.3.
8. Suppose f(2) = 5, f '(2)= 7, g(2) = 3 and g'(2) = 9. 
Let P(x)=f(x) g(x); R(x) = 1/g(x) ; S(x) = 1 / f(x) ; V(x)=f(x)/g(x) and W(x)= 1/V(x).   . 

Find P'(2), R'(2) , S'(2) , V'(2) and W'(2).  
9. Suppose f(5)=2, f'(5) = 3, g'(5)=4 and H(x)= f(x) g(x) with H'(5)= 0. Find g(5).   . 

10. Use the product rule to find formulae for the derivatives of the following functions
assuming that the functions f,g and h are all differentiable.  

 2a. p (x)=(f(x)) .    2

 3  3  2b. p (x)=(f(x)) . [Hint:p (x)=p (x) f(x).] 3 . 

 4c. p (x)=(f(x)) .    4

 kd. p (x)=(f(x))  , k an integer , k > 1. k

e. .     

f. S(x)= f(x) g(x) h(x). . . 

11. Find all x for which f'(x) = 0 when
a. f(x) = (x  -6x + 9) (2x + 1).   2  . 

b. f(x) = (x  - 3x) (x  - 9)  2  .  2

c. f(x) = 1/(x  + x + 1)             2

d. f(x) = (x - 2)/(x  + 1) 2

12. Suppose that P(x) = f(x) g(x) and f(a) = 0 while f '(a) = 1. Explain why P'(a) = 0 if and . 

only if g(a) = 0.
13. Suppose P(x)=(x-a)   G(x) and G is function that is differentiable at a but G(a) =/  0. n .

Prove P'(a) = 0 if and only if n > 1.

14. Draw consecutive transformation figures for Q(x) = 3x-2 and G(u) = 1/u so that the source
line for G is the target line for Q. Use the velocity interpretation for R(x) =G(Q(x)) in the
combined transformation figure to explain why R'(a) = Q'(a) [-1/(Q(a)) ]. .  2

15. Use transformation figures and a velocity interpretation to explain the reciprocal rule.
16. Use the quotient rule for tan(x) = sin(x) / cos(x)  and the reciprocal rule for

sec(x)=1/cos(x) to show tan'(x) = (sec(x))  and sec'(x) = sec(x) tan(x). 2

17. Use the definition of the derivative to obtain the same results as in Problem 16.
Note: Following conventional notation  for trigonometric functions we write   (sec (x))  for ( 2
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sec (x)) . 2

18. Show that cot'(x) = - csc (x) and csc'(x) = - csc(x) cot(x). [See 16.] 2

19. Find dy/dx when y is as follows:
a. y = x sin(x)
b. y = sin(x) / x ,    x =/  0
c. y = x tan(x)            
d. y = x  sec(x) 2

e.  

f. y = sec (x) 2

g. y = sec(x) tan(x)       

h.  ,    x > 0 .

20. Find  equations for the lines tangent to the graph of the tangent function at the point (0,0)
and at the point (B/4 , 1).

21. Find all points on the graph of the secant function between 0 and 2B where the tangent
line to the graph is horizontal.

22. Use the double angle formulae, sin(2x) = 2 sin(x) cos(x) and cos(2x) = cos (x) - sin (x)  to 2  2

 x  xshow that D sin(2x) = 2 cos(2x) and D cos(2x) = -2 sin(2x).  
23. Use the reciprocal rule to find the derivative of e . -x

24. Use the fact that (e )  = e  to show that . Generalize this result and justifyx 2 2x

your generalization for e  where n is a natural number.nx

25. Find  where p is any rational number.

26. Find  where f is a differentiable function. 

27. Find a function f where f ' (x) = x e . Can you generalize? Explain how you arrived at  yourx

result.
28. The unit price p(x) in dollars per pound of fish at a market is determined by the amount of

fish available at the market. Assume that the demand for fish is enough that all the fish
brought to market are sold.The revenues R(x) that result from the sale of x lbs. of fish at a
market is the product of the weight of the fish by the unit price p(x) of the fish. Use the
derivative to explain why the marginal revenue will be 0 when the marginal price is equal
to the opposite of the unit price divided by the amount of fish.
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