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The philosophical issues of the

nature of physical motion have

been discussed as far back as

Zeno's paradoxes. These cynical

paradoxes aimed at attacking

logical argument as a way to

discover the truth purport to

demonstrate the impossibility of

motion!

The Greek philosophers also

considered what the nature of a

continuum was. Aristotle said

that a quantity was either discrete

o r  co n t in u o u s  a nd  th e n

proceeded to try to distinguish

between these two concepts.

M any mathematicians and

philosophers of science continue

to try to explain the nature of the

continuous to this day.

Figure 1

I.I Derivatives and Continuity 

In this section we will explore an important consequence for a function having a derivative.  We
will see that this property, called continuity, is a necessary condition for having a derivative, but
is not sufficient to ensure the existence of a derivative. Continuity is something we often take for
granted in the way we think about many phenomena. 

When we consider how variables change we usually think that these
changes in values pass through all the possible values in between the start
and the finish. As with a runner in a race or a car on a trip, the change we
envision develops from the accumulation of smaller changes. these are
typical of continuous variables. 

Variables that do not change continuously have sudden displacements
like those sometimes used in physics to explain small particle motion or in
business and economics where changes must come in steps because of the
indivisibility of variables units like a single car or the price of a share on the
stock market. 

In the graphical interpretation of a function's continuity appears in the
visual illusion created by the physical graphs drawn with pencils or with
technology. Looking at the graph we see an image of a the curve that has no
holes in it, apparently connected in one piece even though when examined
more closely (perhaps with a microscope) this is not the case. A
discontinuity in the function would appear in the graph as a hole or a break
in the curve  requiring someone tracing the curve with a pen to lift the pen
off the paper to make an accurate sketch.

The word "continuity" itself suggests continuation, the connection of
actions or processes developing over time. As we develop a technical
meaning for continuity and being continuous, keep in mind that in doing so
we are trying to capture some of the common meanings of the word as well.
We would like the common usage and the technical meanings to be consistent in allowing us to
describe experiences we believe are continuous as also being continuous in the
technical sense. But be aware that technical definitions of terms can lead to
some strange examples that may not seem as meaningful. In this section we
will focus on the more sensible aspects of continuity and leave more subtle
examples for another time.

You might want to review Example I.D.2 now, as this is our only textual
example so far of a function that we might describe naively as continuous but
which does not have a derivative at a point. See Figure ***. 

In section I.I.1 we'll explore the concept of continuity in its relation to a
function having a derivative, in its interpretation with graphical and dynamic
models, and in its precise definition. Then in I.I.2 and I.I.3 we will look more
carefully at two important consequences of continuity for a function restricted to a closed interval:
the intermediate value property and the extreme value property. Though reading some of this
discussion may be postponed till Chapter III, you should read Section I.I.1 now, even if only quickly,
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since it provides a conceptual background for understanding some of the arguments presented in
Chapter II.

I.I.1. Continuity and the Derivative: An Introduction. We'll begin informally by considering
a question of estimation. When we find the derivative of a function f at x = a, we have assumed that
a is in the domain of the function. How else could we make sense of the difference quotient

? A less obvious but also necessary feature of the derivative's existence is that f(x) should

make sense for all x sufficiently close to a, that is, for all x in some open interval containing a.
  The issue of continuity arises by asking how close f(x) is to f(a) when x is close to a. We will

examine interpretations of this issue later, but first let's settle the question assuming that f has a
derivative at x = a. Under this assumption we know that when x6a , 

. 

 Now in terms of estimation this means that when x.a, . Continuing to think in

terms of estimation, we have the product 

OR

But when x6a, x-a60 so f (x) . f (a) when x . a. We summarize this work in the following very
important result.

Theorem I.I.1: If f is defined in an open interval containing a, and f  has a derivative at a, then

.

Proof: Although the preceding argument should be convincing, here is another argument that is
a little more precisely organized.

One can check that for x � a, .

As x 6 a,  and x - a 6 0 so the product . 

Hence f(x)6f(a). EOP.

Alternative statements for the conclusion of this theorem are that 

 or  .

Comment: The conclusion of this result seems almost too natural if one
considers most of the functions we've examined so far in our work with the



Chapter I.I.1 10/7/05 3

Figure 3

Definition: Suppose f is defined on an open interval containing a. 
We say that f is continuous at a if 

f (x) makes sense when x = a;  makes sense; and 

.

derivative. You may have trouble imagining a function for which the conclusion does not hold. As
we proceed with a discussion of the interpretation of this condition, you should begin to see that
many functions do not satisfy this condition.

Interpretations: Motion. Suppose f(t) denotes the coordinate of an object on a coordinate line
at time t. Then the conclusion of the theorem can be interpreted as saying that when the time, x, is
close to a, the position of the object, f(x), will be close to f(a). See Figure ***. This seems obvious
when considering a physical object in motion, but not so when considering the position of a light's
image which can be abruptly deflected. In futurist scenarios like "StarTrek" the technology can
transport objects and people over long distances in an instant. In common language, the physical
motion of an object is described as continuous. This is one reason why the term continuous is used
to describe the condition found in the conclusion of the theorem.

Geometry of Curves. When we (or a graphing calculator or a computer)
draw a curve we produce a physical image that represents a relation. When
this curve is drawn without a break in its image, we describe this in common
language as a continuous curve. When the curve is the graph of a function,
then the conclusion of Theorem I.I.1 may be interpreted as saying that when
x is close to a, the corresponding point on the graph (x,f(x)) will be close to
the point (a,f(a)). Thus the curve will appear to be a continuum in a vicinity
of the point (a,f(a)).See Figure 2.

Here is the definition for continuity [ first given in this form by the French mathematician
Augustin-Louis Cauchy (1789-1857)].

Comment: With this definition it is now possible to paraphrase the result of Theorem I.I.1:  "If
f is differentiable at a then f is continuous at a," or in a single clause we can say 

"Differentiability implies continuity at a point."

To understand the concepts involved in continuity better let's look at some examples where a
function is discontinuous (not continuous) at a point. This feature of a function is often apparent on
the graph of the function if sufficient detail is shown. Note that because of Theorem I.I.1 any
example where the function is discontinuous at a will not have the function being differentiable at
a. That would contradict the theorem's conclusion. We'll record this observation here as 
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Corollary I.I.2: If f is a function defined on an open interval containing a and f is not continuous
at a, then f is not differentiable at a.

Proof: This is a logical consequence of Theorem I.I.1.   EOP

Example I.I.1.  Suppose  when x�2 and f (2) = 5. We examine f

at (x=)2 and note that the function is defined at 2 since we are told f(2) = 5. When
x�2,  f(x) can be simplified by algebra, giving f (x) = x+2. 

Thus as x62, with x� 2, f (x) 64.
Unfortunately the limit is not the same as f(2). So the definition of continuity

is not satisfied by f at x = 2.  See Figures *** and *** for a transformation figure
and a graph to help visualize this example.

Comment: In the last example the discontinuity at 2 is typical of what is
described as a "removable discontinuity." What makes it removable is the fact
that as x 6 2, f(x) did have a limit, namely 4. If f(2) had been 4, then f(x) would
have been continuous at 2. In this sense the discontinuity at 2 could be removed
by considering a second function g where g(x) = f(x) when x  � 2 and with g(2)
= 4. This removes the hole in the graph of f  by letting g(2)=4. Otherwise g
agrees in value with f. In fact, g(x) = x + 2 for all x .

Example I.I.2. Suppose s(x) = 3 when x # 2 and s(x) = 5 when 2 < x.
We consider the continuity of s at 2. Certainly s(2)=3, and when x < 2 and

x62, s(x) = 3. But when x>2 and x62, s(x) = 5 which means that 3 cannot be a
limit for s as x 6 2. But just as well 5 cannot be a limit for s as x 6 2. There is no
limit for s as x62. Thus the equality that is required for continuity has one
expression in it that doesn't make sense, as there is no limit for s(x) as x 6 2. This
function cannot be continuous at 2. See Figures *** and *** for both the
transformation figure and graph of s.

Remark:  The function s is typical of many real situations where the value of
a function will change dramatically at a particular point, sometimes called a
threshold. Examples of this type of real situation are the prices for postage, the
tax rates for personal income tax, and the assignment of grades in some (calculus) courses based on
the total number of points received on tests during the course. The graph of such functions appear
to make a sudden change at the threshold point. These discontinuities are described as "step
discontinuities."   What characterizes these discontinuities is the fact that as x6a with x < a , there
is a number L where f(x)6L, while as x6a with a < x, there is a different number R where f(x)6 R.
Since L � R there is no possible limit for f(x) as x6a. In a sense the values of the function at a take
a step from L to R as x moves from less than a to greater than a.

Notation for one sided limits: In the situation just described when as x6 a with x<a,  f(x)6L we
say that f(x) approaches L as "x goes up to a," or as "x approaches a from the left," or as "x
approaches a from below."
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x

1.5 4

1.9 100

1.99 10000

2.5 4

2.1 100

2.01 10000

In the limit language we say L is the left handed limit of f(x) as x6a from below, and we  write

either  or . Similar language and notation are used for the situation where as

x6a with x>a, f(x)6 R, called the right hand limit of f(x) as x6a from above. That is  or

. 

So in the last example we write  and .

Using this notation for "one sided limits" leads to the following 

Proposition I.I.3. Suppose f is defined in an open interval containing a. The following statements
are equivalent:

i) ;

ii)  and .    

Discussion: This is merely expresses what should be informally clear with the notation of one
sided limits.     EOP.

It should go without saying that if a function is not defined at a it cannot
be continuous at a.  But the example of a removable discontinuity suggests
that in some cases a function can be modified slightly by defining a new
function at a so that this extended function is continuous at a. The step
function example gives a situation where it is impossible to define an
extension or modification of a function to be continuous at a point. Our last
example in this part of section I.I shows a more severe problem with a
function that "blows up" at a point.

Example I.I.3. Suppose r(x) = 1/(x-2)  when x � 2 and r(2) = 5.  When 2

we consider the values of r(x) as x 6 2 it is clear that these values get larger
and larger. See Table ***. In fact when x is closer than .1 to the number 2,
r(x) > 100. It shouldn't be hard to see how close you would need to be before
you could say r(x) > B for any number B. With this happening to the values
of r(x) when x is  close to 2, it is impossible for r(x) to have even a one sided
limit as x62. Therefore r(x) is not continuous at 2 and certainly there is no way
to adjust the value of r at 2 to make r continuous at 2. See Figure *** for the
reason why this type of discontinuity is referred to as "blowing up." In the graph
of r, the vertical line x = 2 is called a vertical asymptote for r since the graph
of r appears to get closer and closer to this line as you investigate points on the
graph with first coordinate close to 2.
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Definition: We say that f is continuous on an open interval (b,c) if  f is continuous at a for
any a  which is an element of (b,c).
We say that f is continuous on a closed interval [b,c] if f is continuous on (b,c) and 

i) f is defined at b and c,

                ii) when x6b with x>b, f(x) 6 f(b), that is, , and 

                iii) when x6c with x<c, f(x) 6 f(c), or . 

We say that f is continuous if it is continuous for every open or closed interval in its domain. 

Notation for Blowing Up: The fact that as x62 , r(x) gets larger and larger  without any bound
is denoted by writing r(x) 6 4 . Note that 4 in this notation is not a number, but merely indicates the
tendency of r(x) to become very large without bound. With the limit notation this fact is expressed

by writing 

Variations on this use of the limit with the symbol 4 and -4 are explored further in the exercises,
as well as in later chapters.

The function f where f(x) = 1/x when  x � 0 allows us to see one sided limits together with
blowing up . Draw a sketch of the graph and the transformation figure for this function to help
understand why lim  f(x) = 4  while lim  f(x) = - 4.

                      x60                        x60 +  -

Final notes on differentiability and continuity: Don't make the mistake of identifying Theorem
I.I.1  with the definition of continuity. As a simple and memorable example you should be able to
explain why f(x) = *x* is continuous at 0 but not differentiable at 0.  Continuity is a different
concept from differentiability and you will never confuse one with the other if you keep this
example at hand.

   Our next definitions are convenient to describe functions that are continuous at all points in a
variety of situations.   

Example I.I.4: The following functions are continuous: x  for any rational number p, all p

polynomial functions, simple exponential and logarithmic functions, sin(x), and cos(x).
   As we explore more functions we will note any exceptions to the continuity issue where the

derivative fails to exist. Generally however we will rely on Theorem I.I.1 to explain why most of the
functions we encounter in this text are continuous.
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Exercises I.I.1
1. For each of the following functions draw a transformation figure and a graph illustrating the

function for an interval in its domain containing the number 2.  Discuss the continuity of the function
at x = 2 using the definition.

a.     c.  

            

b. 

2. Find a value for k so that the following functions are continuous at x = 2. Justify your
conclusion using the definition of continuity.

a.          b.

  

3. Suppose G(x) is defined by

Find the following limits when possible:
 a.  lim  G(x)                           b. lim G(x)
    x 6 1                                  x 6 3
 c.  lim   G(x)                           d. lim G(x)                                e.  lim G(x)
    x 6 2                                  x 6 2 +                                       x 6 2-

 f. Is G continuous at x = 1?  3?  2? Explain briefly.

4. Suppose P(x) is defined by 

Find the following limits when possible:
 a.  lim  P(x)                           b. lim P(x)
    x 6 1                                  x 6 3
 c.  lim   P(x)                           d. lim P(x)                             e.  lim P(x)
    x 6 2                                  x 6 2                                       x 6 2-  +

f. Is P continuous at x = 1?  3?  2? Explain briefly.
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5. Suppose r(x) is defined by 

Find the following limits when possible:
 a.  lim  r(x)                           b. lim r(x)
    x 6 1                                  x 6 3
 c.  lim   r(x)                          d. lim r(x)                           e.  lim r(x)
    x 6 2                                 x 6 2 +                                 x 6 2-

 f. Is r continuous at x = 1?  3?  2? Explain briefly.

6. Find the following limits when possible.
a. lim  (x  - 8)/(x - 2)                b. lim (x  - 6)/(x - 2)  3  3

  x 6 2                                   x 6 2 +

c.  lim (x  - 6)/(x - 2)                d. lim (x-2) / (x  - 4) 3  2

  x 6 2                                  x 6 2 -

7. Project: One sided derivatives. If we replace the general limit with a left handed or right
handed limit in the definition of the derivative of a function at a, we arrive at the notion of a one

-sided derivative for a function. Write a definition for the left hand derivative of f at a, denoted f ' (a).

+Write a definition for the right hand derivative of f at a, denoted f ' (a).
Give an example where these one sided derivatives exist for a function but where the function

does not have a derivative.
Discuss the following statement with examples: A function has a derivative if and only if (i) it

has a left hand derivative and a right hand derivative; and (i) the left hand derivative the derivative
equlas the right hand derivative.

8. Consider the function . 

a. Explain why f is continuous on the interval (0,4). Is f continous on [0,4)?  
b. Using the definition of the derivative, explain why f is not differentiable at x = 0.  Discuss this

statement using the motion and the tangent line interpretations of the derivative.

9. Project: Vertical tangent lines. Definition: We say that the graph of a function f has a
vertical tangent line at x = a if 

i) f is not differentiable at x = a but is differentiable for all other x in an open interval containing
a, and 

ii) if lim *f '(x)* = 4.
  x 6a      
a) Show that f(x) = x  has a vertical tangent line at x = 0. 1/3

b) Show that f(x) = x  has a vertical tangent line at x = 0. 2/3

c) Give an explanation of this definition in terms of the graphs of f for parts a) and b)


