Using Mapping Diagrams to Understand Linear Functions

Martin Flashman

UCDMP Saturday Series 2014-15 November 1, 2014

Professor of Mathematics Humboldt State University <u>flashman@humboldt.edu</u> http://users.humboldt.edu/flashman

Using Mapping Diagrams to Understand Linear Functions Links:

<u>http://users.humboldt.edu/flashman/Pres</u> entations/UCDMP/UCDMP.MD.LINKS.html

Background Questions

- Are you familiar with Mapping Diagrams?
- Have you used Mapping Diagrams to teach functions?
- Have you used Mapping Diagrams to teach content besides function definitions?

Mapping Diagrams

A.k.a. Function Diagrams Dynagraphs How Linear Functions Fit into Other Functions: Quadratic Example Will be reviewed at end. ©

- 1. Linear: Subtract 1.
- 2. Square result.
- 3. Linear: Multiply by 2 then add 3.

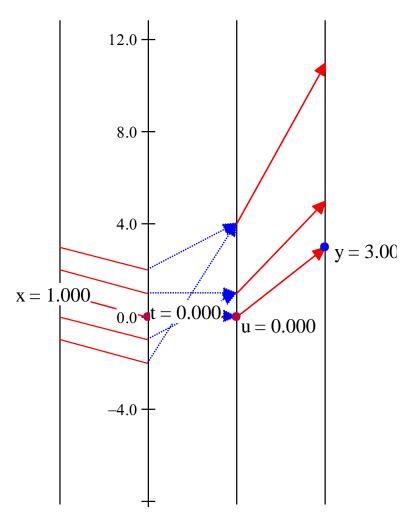
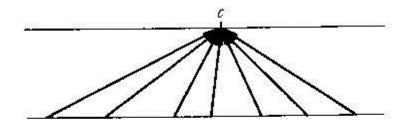


Figure from Ch. 5 *Calculus* by M. Spivak



(a) f(x) = c

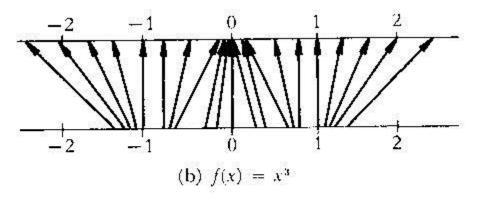


FIGURE 2

Visualizing Linear Functions

- Linear functions are both necessary, and understandable- even without considering their graphs.
- There is a sensible way to visualize them using "mapping diagrams."
- Examples of <u>important function features (like</u> <u>rate and intercepts)</u> can be illustrated with mapping diagrams.
- Activities for students engage understanding for both function and linearity concepts.
- Mapping diagrams can use simple straight edges as well as technology.

Main Resource

 Mapping Diagrams from A(lgebra) B(asics) to C(alculus) and D(ifferential) E(quation)s. A Reference and Resource Book on Function Visualizations Using Mapping Diagrams (Preliminary Sections- NOT YET FOR publication)

http://users.humboldt.edu/flashman/MD/section-1.1VF.html

Linear Mapping diagrams

We begin our more detailed introduction to mapping diagrams by a consideration of linear functions :

Prob 1: Linear Functions - Tables

×	5 x - 7
3	
2	
1	
0	
-1	
-2	
-3	

Complete the table. x = 3,2,1,0,-1,-2,-3f(x) = 5x - 7

For which x is f(x) > 0?

Linear Functions: Tables

X	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22

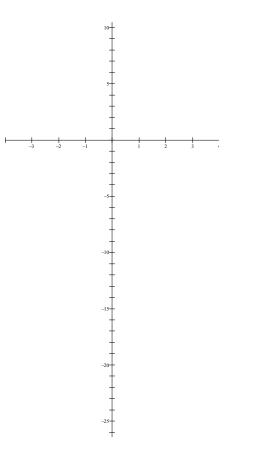
Complete the table. x = 3,2,1,0,-1,-2,-3 f(x) = 5x - 7

For which x is f(x) > 0?

Linear Functions: On Graph

Plot Points (x, 5x - 7):

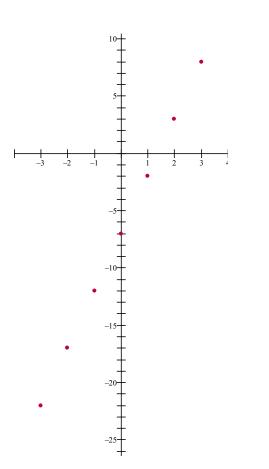
×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22



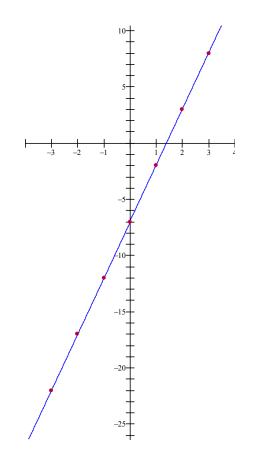
Linear Functions: On Graph

Connect Points (x 5x - 7)

(X, JX - 7)	
5 x - 7	
8	
3	
-2	
-7	
-12	
-17	
-22	



Linear Functions: On Graph



Connect the Points

×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22

Linear Functions: Mapping diagrams Visualizing the table.

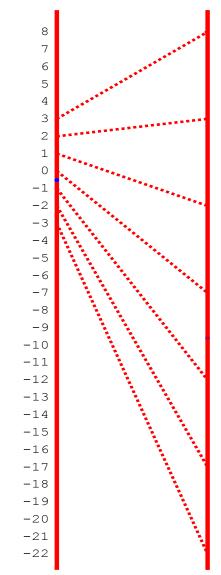
 Connect point x to point 5x - 7 on axes

×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22

Linear Functions: Mapping diagrams Visualizing the table.

 Connect point x to point 5x - 7 on axes

×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22



Technology Examples

- Excel example
- Geogebra example

Simple Examples are important!

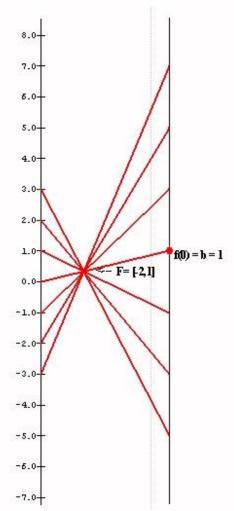
- f(x) = x + C Added value: C
- f(x) = mx Scalar Multiple: m
 Interpretations of m:
 - slope
 - rate
 - Magnification factor
 - m > 0 : Increasing function
 - m < 0 : Decreasing function
 - m = 0 : Constant function

- Simple Examples are important! f(x) = mx + b with a mapping diagram --Five examples: Back to Worksheet Problem #2
- Example 1: m = -2; b = 1: f(x) = -2x + 1
- Example 2: m = 2; b = 1: f(x) = 2x + 1
- Example 3: $m = \frac{1}{2}$; b = 1: $f(x) = \frac{1}{2}x + 1$
- Example 4: m = 0; b = 1: f(x) = 0 x + 1
- Example 5: m = 1; b = 1: f(x) = x + 1

Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

Example 1:
$$m = -2$$
; $b = 1$
f (x) = -2x + 1

- Each arrow passes through a single point, which is labeled F = [- 2,1].
 - $\Box \text{ The point } \mathbf{F} \text{ completely determines the function } f.$
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through
 F
 - meeting the target line at a unique point / number, -2x + 1,
 - which corresponds to the linear function's value for the point/number, x.



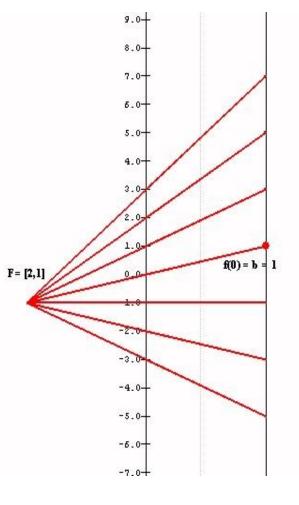
Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

Example 2:
$$m = 2$$
; $b = 1$
f(x) = 2x + 1

Each arrow passes through a single point, which is labeled

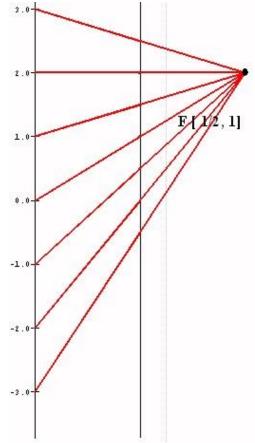
F = [2,1].

- $\Box \text{ The point } \mathbf{F} \text{ completely determines} \\ \text{the function } f.$
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through
 F
 - meeting the target line at a unique point / number, 2x + 1,



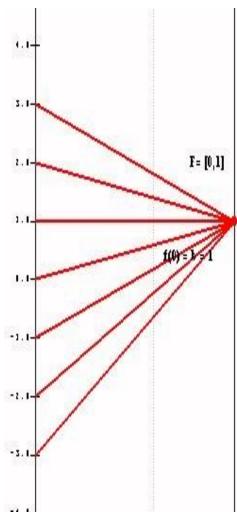
Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

- Example 3: m = 1/2; b = 1f(x) = $\frac{1}{2}$ x + 1
- Each arrow passes through a single point, which is labeled F = [1/2,1].
 - The point **F** completely determines the function f.
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through F
 - meeting the target line at a unique point / number, $\frac{1}{2}x + 1$,



Visualizing f(x) = mx + b with a mapping diagram -- Five examples: Example 4: m = 0; b = 1 f(x) = 0 x + 1

- Each arrow passes through a single point, which is labeled F = [0,1].
 - \Box The point **F** completely determines the function *f*.
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through F
 - meeting the target line at a unique point / number, f(x)=1,



Visualizing f(x) = mx + b with a mapping diagram -- Five examples Example 5: m = 1; b = 1

f(x) = x + 1

- Unlike the previous examples, in this case it is not a single point that determines the mapping diagram, but the single arrow from 0 to 1, which we designate as F[1,1]
- It can also be shown that this single arrow completely determines the function. Thus, given a point / number, x, on the source line, there is a unique arrow passing through x parallel to F[1,1] meeting the target line a unique point / number, x + 1, which corresponds to the linear function's value for the point/number, x.
 - The single arrow completely determines the function *f*.

-0.12

- given a point / number, x, on the source line,
- there is a unique arrow through x parallel to F[1,1]
- meeting the target line at a unique point / number, x + 1,

Function-Equation Questions with linear focus points (Problem 3)

- Solve a linear equation:
 - 2x+1 = 5
 - Use focus to find x.

Function-Equation Questions with linear focus points (Problem 4)

- Suppose f is a linear function with f(1) = 3 and f(3) = -1.
- Without algebra
 - Use focus to find f (0).
 - Use focus to find x
 where f (x) = 0.

More on Linear Mapping diagrams

We continue our introduction to mapping diagrams by a consideration of the <u>composition of linear functions</u>.

Do Problem 5

Problem 5: Compositions are keys!

An example of composition with mapping diagrams of simpler (linear) functions.

2.0-

1.0

0.0

-1.0-

-2.0-

-3.0

$$-g(x) = 2x; h(x)=x+1$$

$$-f(x) = h(g(x)) = h(u)$$

where u =g(x) = 2x

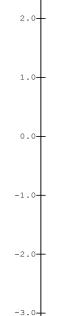
$$-f(x) = (2x) + 1 = 2x + 1$$

$$f(0) = 1 m = 2$$

Compositions are keys!

All Linear Functions can be understood and visualized as compositions with mapping diagrams of simpler linear functions.

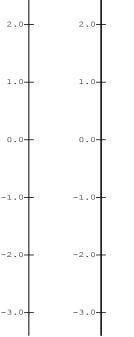
$$- f(x) = 2 x + 1 = (2x) + 1 :$$



Compositions are keys!

All Linear Functions can be understood and visualized as compositions with mapping diagrams of simpler linear functions.

Point Slope Example: f(x) = 2(x-1) + 3 g(x)=x-1 h(u)=2u; k(t)=t+3 · f(1)= 3 slope = 2



Questions for Thought

- For which functions would mapping diagrams add to the understanding of composition?
- In what other contexts are composition with "x+h" relevant for understanding function identities?
- In what other contexts are composition with "-x" relevant for understanding function identities?

Inverses, Equations and Mapping diagrams

- Inverse: If f(x) = y then $f^{-1}(y) = x$.
- So to find $f^{-1}(b)$ we need to find any and all x that solve the equation f(x) = b.
- How is this visualized on a mapping diagram?
- Find b on the target axis, then trace back on any and all arrows that "hit" b.

Mapping diagrams and Inverses Inverse linear functions:

1.0-

0.0-

-1.0-

-2.0-

Classroom Activity

- Use transparency for mapping diagrams-
 - Copy mapping diagram of f to transparency.
 - Flip the transparency to see mapping diagram of inverse function $g = f^{-1}$. ("before or after") $f(g(b)) = b; \quad g(f(a)) = a$
- Example i: g(x) = 2x; $g^{-1}(x) = \frac{1}{2}x$
- Example ii: $h(x) = x + 1; h^{-1}(x) = x - 1$

Mapping diagrams and Inverses

- Inverse linear functions:
- socks and shoes with mapping diagrams
- $g(x) = 2x; g^{-1}(x) = \frac{1}{2}x$ • $h(x) = x + 1; h^{-1}(x) = x - 1$ • f(x) = 2x + 1 = (2x) + 1 = h(g(x))• g(x) = 2x; h(u) = u + 1- The inverse of f: $f^{-1}(x) = g^{-1}(h^{-1}(x)) = \frac{1}{2}(x - 1)$

Mapping diagrams and Inverses

Inverse linear functions:

"socks and shoes" with mapping diagrams

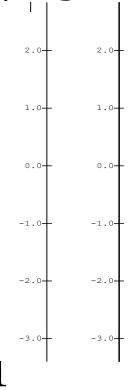
•
$$f(x) = 2(x-1) + 3$$

$$-g(x)=x-1$$

$$-h(u)=2u$$

$$-k(t) = t + 3$$

- The inverse of f: $f^{-1}(x) = \frac{1}{2}(x-3) + 1$



Questions for Thought

- For which functions would mapping diagrams add to the understanding of inverse functions?
- How does "socks and shoes" connect with solving equations and justifying identities?

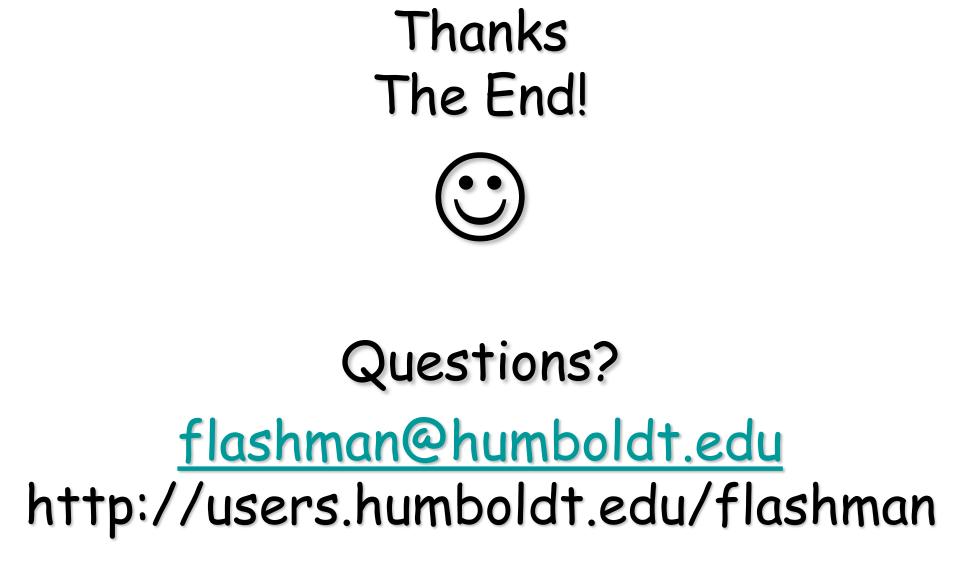
Closer: Quadratic Example From Preface. ©

$$g(x) = 2 (x-1)^2 + 3$$

Steps for g:

- 1. Linear: Subtract 1.
- 2. Square result.
- 3. Linear: Multiply by 2 then add 3.





References

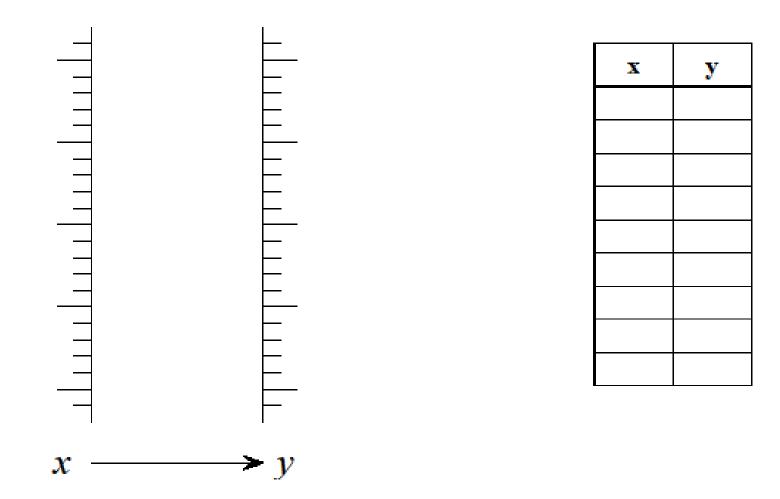
Mapping Diagrams and Functions

- <u>SparkNotes > Math Study Guides > Algebra</u> <u>II: Functions</u> Traditional treatment.
 - <u>http://www.sparknotes.com/math/algebra2/functions/</u>
- Function Diagrams. by Henri Picciotto Excellent Resources!
 - <u>Henri Picciotto's Math Education Page</u>
 - Some rights reserved
- Flashman, Yanosko, Kim <u>https://www.math.duke.edu//education/prep0</u> <u>2/teams/prep-12/</u>

Function Diagrams by Henri Picciotto

Function Diagrams

Henri Picciotto, www.picciotto.org/math-ed



More References

 Goldenberg, Paul, Philip Lewis, and James O'Keefe. "Dynamic Representation and the Development of a Process Understanding of Function." In The Concept of Function: Aspects of Epistemology and Pedagogy, edited by Ed Dubinsky and Guershon Harel, pp. 235-60. MAA Notes no. 25. Washington, D.C.: Mathematical Association of America, 1992.

More References

- <u>http://www.geogebra.org/forum/viewtopic.ph</u>
 <u>p?f=2&t=22592&sd=d&start=15</u>
- "<u>Dynagraphs}--helping students visualize</u> function dependency" · GeoGebra User Forum
- "degenerated" dynagraph game ("x" and "y" axes are superimposed) in GeoGebra: <u>http://www.uff.br/cdme/c1d/c1d-html/c1d-</u> <u>en.html</u>

More Think about These Problems

- M.1 How would you use the Linear Focus to find the mapping diagram for the function inverse for a linear function when m≠0?
- **M.2** How does the choice of axis scales affect the position of the linear function focus point and its use in solving equations?
- M.3 Describe the visual features of the mapping diagram for the quadratic function $f(x) = x^2$. How does this generalize for *even* functions where f(-x) = f(x)?
- M.4 Describe the visual features of the mapping diagram for the cubic function $f(x) = x^3$. How does this generalize for *odd* functions where f(-x) = -f(x)?

More Think about These Problems

- L.1 Describe the visual features of the mapping diagram for the quadratic function $f(x) = x^2$. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.2 Describe the visual features of the mapping diagram for the quadratic function $f(x) = A(x-h)^2 + k$ using composition with simple linear functions. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.3 Describe the visual features of a mapping diagram for the square root function $g(x) = \sqrt{x}$ and relate them to those of the quadratic $f(x) = x^2$. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.4 Describe the visual features of the mapping diagram for the reciprocal function $f(x) = \frac{1}{x}$.

Domain? Range? "Asymptotes" and "infinity"? Function Inverse?

L.5 Describe the visual features of the mapping diagram for the linear fractional function $f(x) = \frac{A}{x-h} + k$ using composition with simple linear functions. Domain? Range? "Asymptotes" and "infinity"? Function Inverse?

Thanks The End! REALLY! flashman@humboldt.edu http://users.humboldt.edu/flashman