Now we can solve the quadratic equation (*)  for $x$ in terms
    of $y$ :
    $x = \frac{-B\ y \pm \sqrt{B^2 y^2 -4 AC y^2}}{2A} =  \frac{-B
    \pm  \sqrt{B^2 -4 AC}}{2A}y $ 
      
      giving ideal points : < $ -B \pm  \sqrt{B^2 -4
    AC},2A,0$ >
    
    So C  has exactly two
    distinct [but not very pretty] ideal points .