The Real Projective Plane $RP^2$
Consider $R^3 = \{ (x,y,z) : x,y,z \in R\} $ as a vector space over $R$.
Definition:
$ v, w \in R^3 - {(0,0,0)}$ , $v$ ~ $w$ iff there is $c \ne 0$ where $w = cv$.
FACT
:
~ is an equivalence relation
.
Notation
: $[v]$
~
$=\{ w: w$ ~ $v\} =$ < $ x,y,z$ > for $v =(x,y,z) \in R^3$.
Definition:
The real projective plane
: $RP^2=\{[v]$
~
$ :v \in R^3\ -\{(0,0,0)\} $}
N.B.
The Euclidean plane
in $RP^2$: $R^2$ "=" {< $ x,y,1$ > $: x,y \in R\}$
An
ideal point
in $RP^2$: < $x,y,0$ > $\in RP^2$
The ideal points in the real projective plane: $RP^2 - R^2 = $ {< $x,y,0$ > $: x,y \in R\} $
The Euclidean Plane $R^2$ of $RP^2$ in $R^3$
Ideal Points of $RP^2$
in $R^3$