

# Functions, Duality, and Mapping Diagrams

State of Jefferson Math Congress

Oct. 5, 2013

Martin Flashman

Professor of Mathematics

Humboldt State University

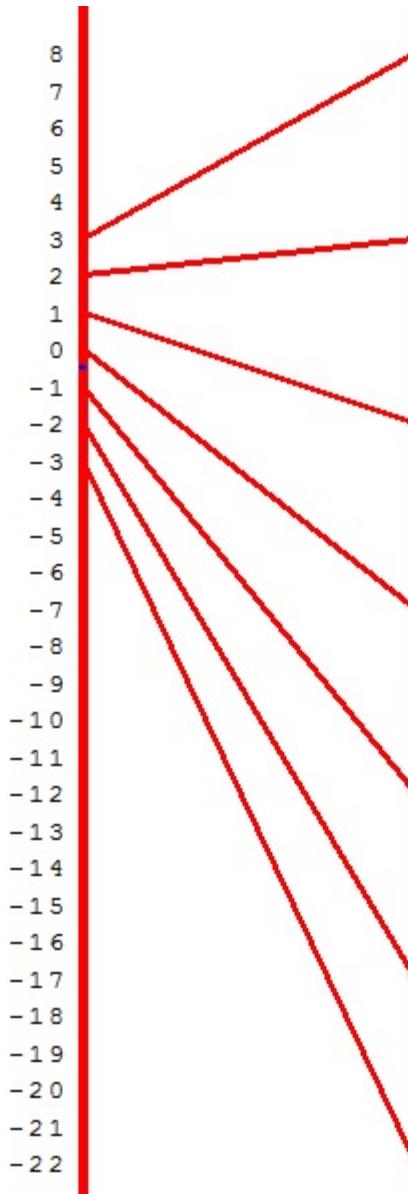
[flashman@humboldt.edu](mailto:flashman@humboldt.edu)

<http://users.humboldt.edu/flashma>

# What is a Mapping Diagram?

## What happens before the graph.

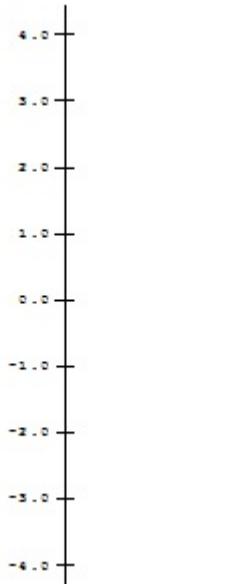
| $x$ | $5x - 7$ |
|-----|----------|
| 3   | 8        |
| 2   | 3        |
| 1   | -2       |
| 0   | -7       |
| -1  | -12      |
| -2  | -17      |
| -3  | -22      |



A.1 Suppose  $f$  is a function determined by the following table :

|        |    |    |    |    |   |   |   |    |   |
|--------|----|----|----|----|---|---|---|----|---|
| $t$    | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3  | 4 |
| $f(t)$ | -3 | -2 | 0  | 3  | 4 | 3 | 2 | -1 | 0 |

Complete the following mapping diagram for  $f$  with the indicated numbers. [Use the same scale for the second axis.]

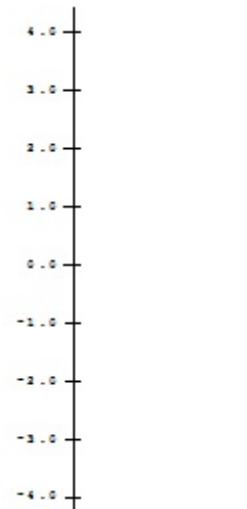


B. Suppose that  $f(x) = 2x + 1$  for all  $x \in \mathbb{R}$ .

B.1. Complete the following table :

| $x$ | $f(x)$ |
|-----|--------|
| 2   |        |
| 1   |        |
| 0   |        |
| -1  |        |
| 2   |        |

B.2. Complete the following mapping diagram for  $f$  with the indicated numbers. [Use the same scale for the second axis.]



## Worksheet C

$f(x) = mx + b$  Sketch mapping diagram.

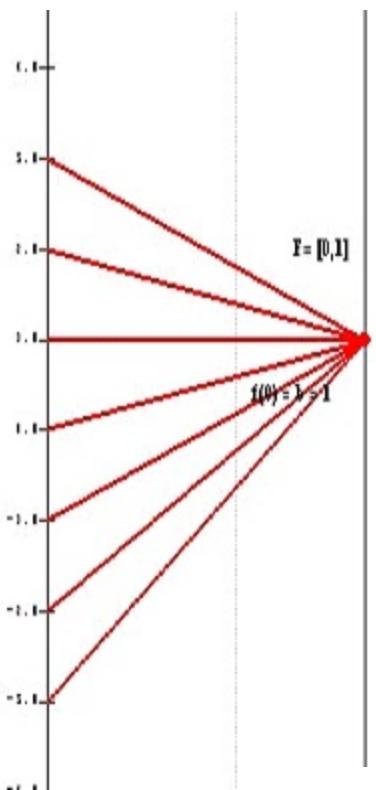
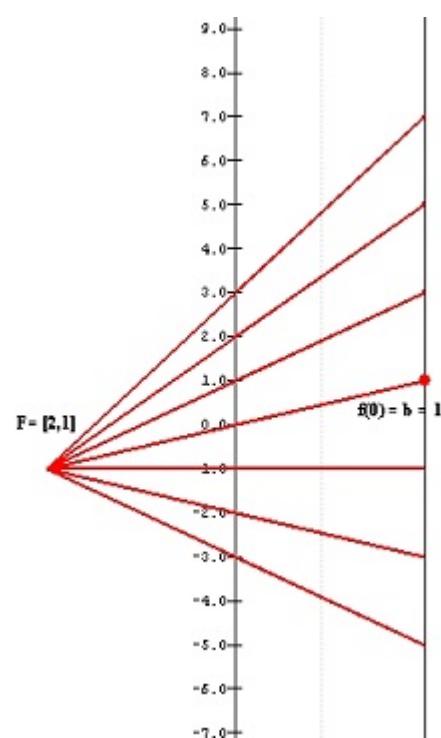
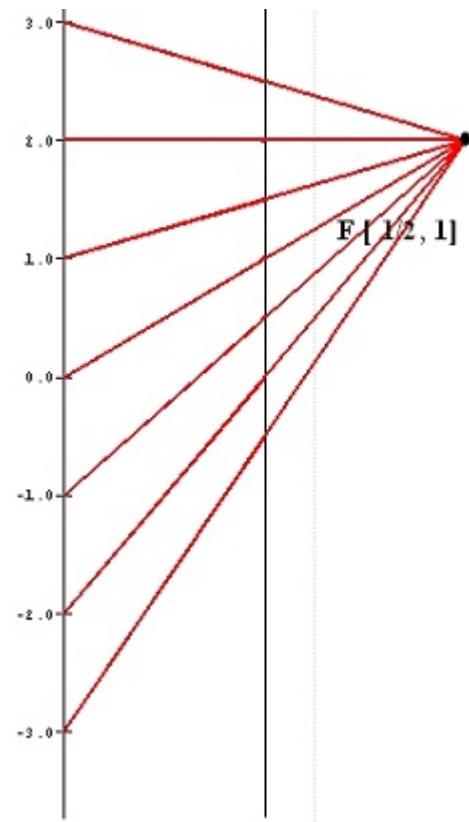
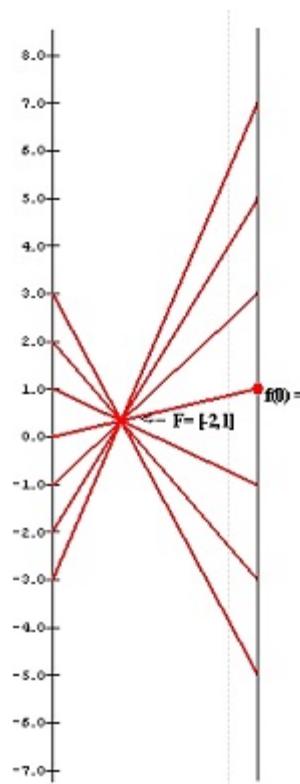
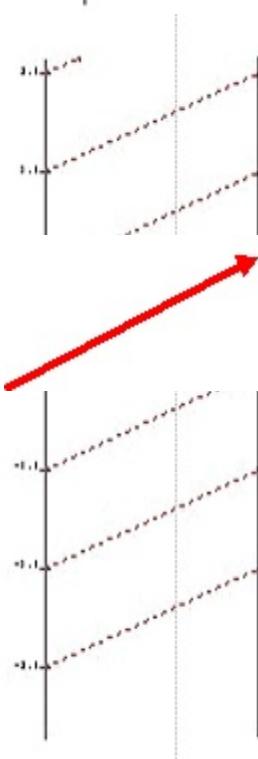
1:  $m = -2$ ;  $b = 1$ :  $f(x) = -2x + 1$

2:  $m = 2$ ;  $b = 1$ :  $f(x) = 2x + 1$

3:  $m = \frac{1}{2}$ ;  $b = 1$ :  $f(x) = \frac{1}{2}x + 1$

4:  $m = 0$ ;  $b = 1$ :  $f(x) = 0x + 1$

5:  $m = 1$ ;  $b = 1$ :  $f(x) = x + 1$



# Duality in Geometry

Duality: A pairing of words, concepts and figures.

## Words

|              |   |              |
|--------------|---|--------------|
| Point        | → | Line         |
| Line         | → | Point        |
| Intersection | → | Join         |
| Join         | → | Intersection |

## Concepts and Figures

|                   |   |                   |
|-------------------|---|-------------------|
| Triangle          | → | Trilateral        |
| Graph of Function | → | Mapping Diagram   |
| A range of points | → | A pencil of lines |

# Duality Exercise

I say “point”;

you say “line”.

I say “line”;

you say “point”.

I say “intersection”;

you say “join”.

I say “join”;

you say “intersection”.

# Principle of Duality in Projective Planar Geometry (PPG, also $\mathbb{RP}^2$ )

Suppose  $S$  is a statement in PPG and  $S'$  is the corresponding dual statement in PPG that results by applying the appropriate changes to the words and concepts of  $S$ .

---

**Principle:**  $S$  is a theorem of PPG if and only if  $S'$  is a theorem of PPG.

---

# Application of Duality in PPG

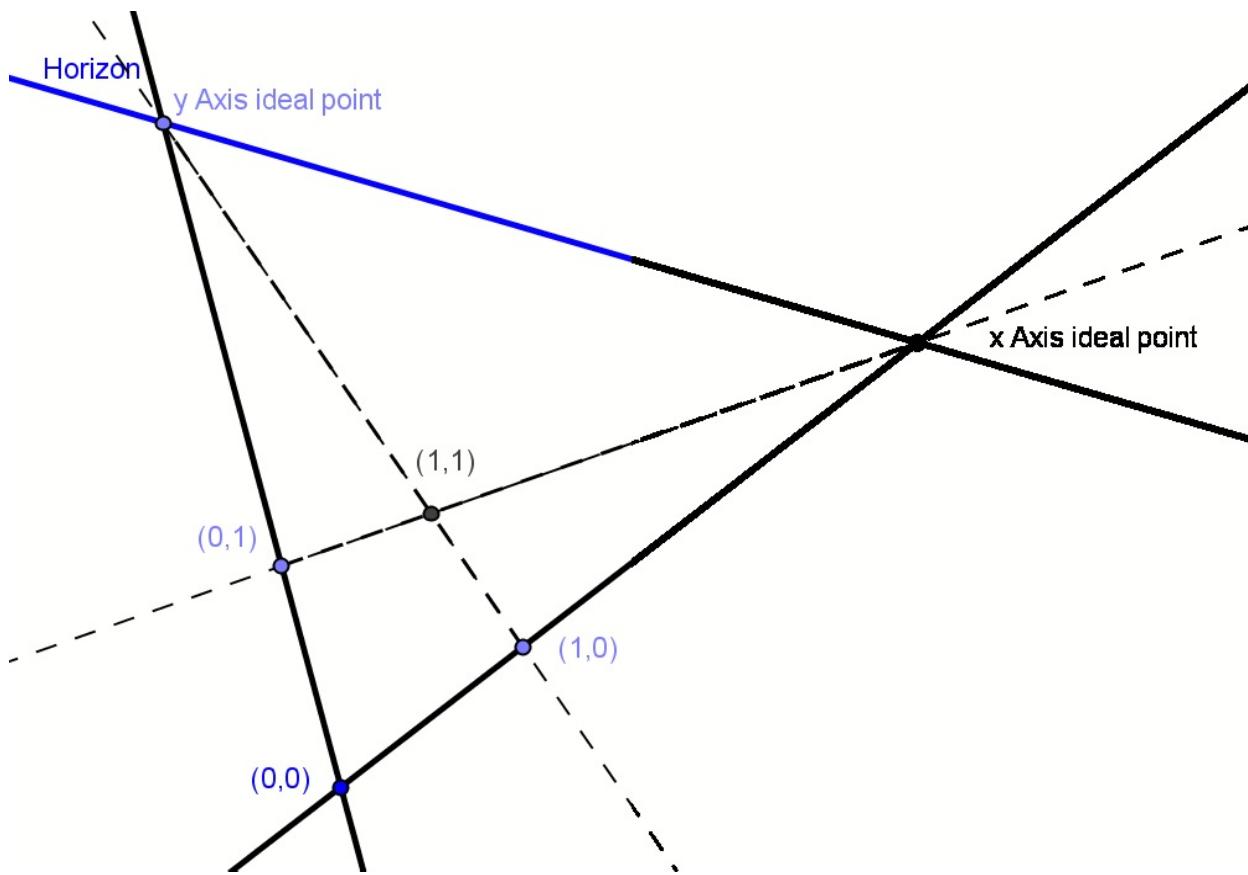
S: Two points, P and Q, determine a unique line,  
the join of the points P and Q.

S': Two lines, p and q, determine a unique point,  
the intersection of the lines p and q.

- When lines are parallel in Euclidean Geometry they meet in PPG at a unique **point at infinity**.
- Two distinct points at infinity determine a unique line, the line at infinity ( the "horizon" line).

So parallel lines meet on the horizon line.

# A look at $\mathbb{RP}^2$ visualizing PPG.



Look at Worksheet E.1.

Graph  $f(x) = x$  and  $g(x) = x+1$  in  $\mathbb{RP}^2$ .

## Duality and Linear Functions

Suppose  $f: \mathbb{R} \rightarrow \mathbb{R}$  is defined by

$$f(x) = mx + b.$$

The graph of  $f$ ,

$$\ell_f = \{ (x, y) : y = f(x), x \in \mathbb{R} \}$$

is a unique line in the Euclidean plane, which we can consider a line in PPG.

A point  $P$  in Euclidean geometry lies on  $\ell_f$  if and only if for some  $a \in \mathbb{R}$ ,  $P$  is the point of intersection of two lines

$$\{(a, y) : y \in \mathbb{R}\} \text{ and } \{(x, f(a)) : x \in \mathbb{R}\}.$$

Consider  $\ell_f$  as a line in PPG.

Then by the principle of duality, there is a unique point,  $L_f$ , in PPG with dual properties:

$L_f$  has a distinguished pencil of lines passing through it determined by the function  $f$ .

A line  $p$  passes through  $L_f$ , if and only if for some  $a \in R$ ,  $p$  is the join of two points:

$A$ , a point determined on a line (the  $X$  axis) corresponding to the number  $a$ , and

$B=f(A)$ , a point determined on a line (the  $Y$  axis) corresponding to the number  $f(a)$ .

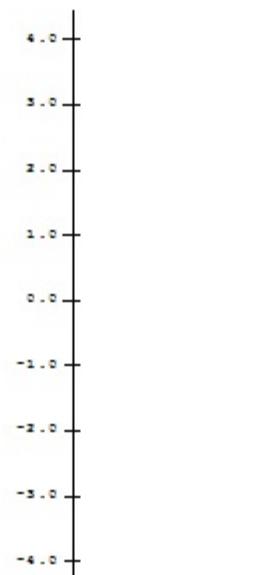
We will call the point  $L_f$  the “focus point” for the linear function  $f$ .

## Applications of the Focus Point.

1. Two pairs of data determine a linear function,  $f$ .  $(1, 3), (2, 0)$ . Find  $f(0)$

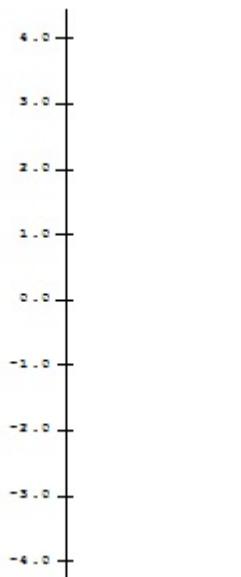
**Solution:** Draw the arrows on the Mapping Diagram and extend them to meet at the Focus Point.

To find  $f(0)$  draw the line from the focus point on the Domain Axis on the MD. Where the line meets the Target axis is  $f(0)$ .



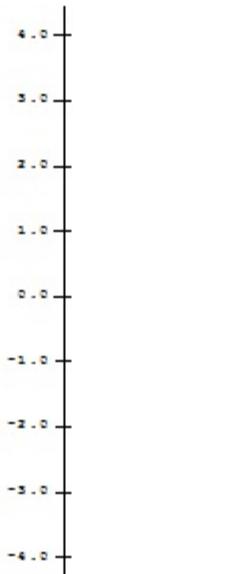
2. Using the same function as in the previous problem find a where  $f(a) = -6$ .

**Solution:** Draw the line from the focus point of  $f$  to  $-6$  on the target axis. Where this line meets the Domain axis, is the desired value for  $a$ .



3. Suppose  $g(x)=m'x + b'$  is a linear function with  $m' \neq m$ . Find  $a$  where  $f(a) = g(a)$ .

Solution outline: Find the focus points for  $f$  and  $g$ . Draw the line determined by these two focus points. Where it meets the Domain axis is the desired number  $a$ .



## Visualizing functions $f: \mathbb{RP}^1 \rightarrow \mathbb{RP}^1$

Many  $f: \mathbb{R} \rightarrow \mathbb{R}$  functions extend to give functions from  $\mathbb{RP}^1$  to  $\mathbb{RP}^1$ .

Examples:

$$1. \ f(x) = 4: \ f(\infty) = 4.$$

$$2. \ f(x) = 3x + 4: \ f(\infty) = \infty.$$

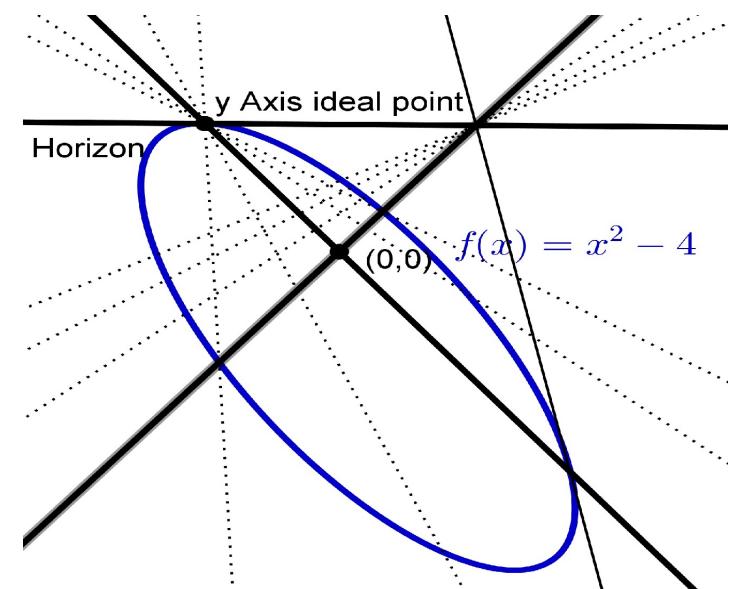
$$3. \ f(x) = x^2 - 4: \ f(\infty) = \infty.$$

$$4. \ f(x) = 1/(x-1): \ f(1)=\infty. \ f(\infty) = 0.$$

We can visualize these in  $\mathbb{RP}^2$  by treating the infinite values appropriately.

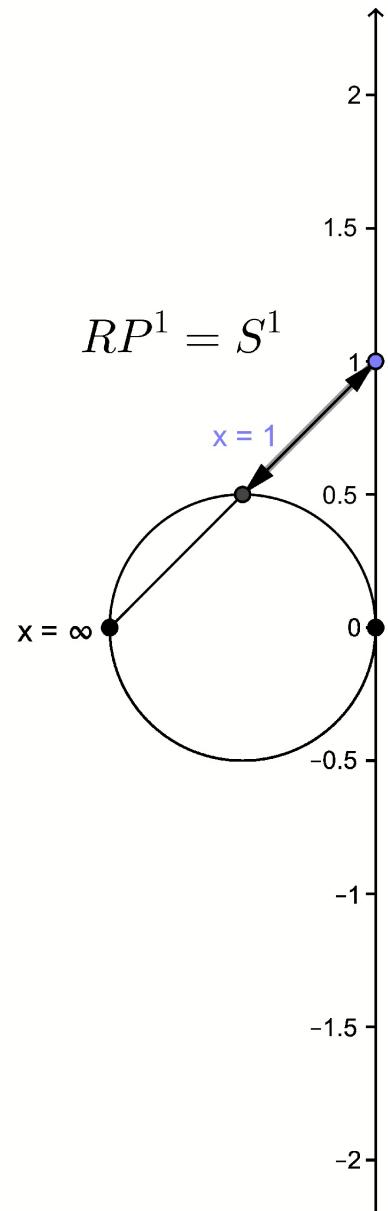
1.  $f(x) = 4, f(\infty) = 4$  (?).
2.  $f(x) = 3x + 4, f(\infty) = \infty$ .
3.  $f(x) = x^2 - 4. f(\infty) = \infty$ .

[Created with Geogebra]



4.  $f(x) = 1/(x-1). f(1)=\infty. f(\infty) = 0$ .

But in fact  $RP^1$  can be visualized as a circle.  
See Worksheet D.

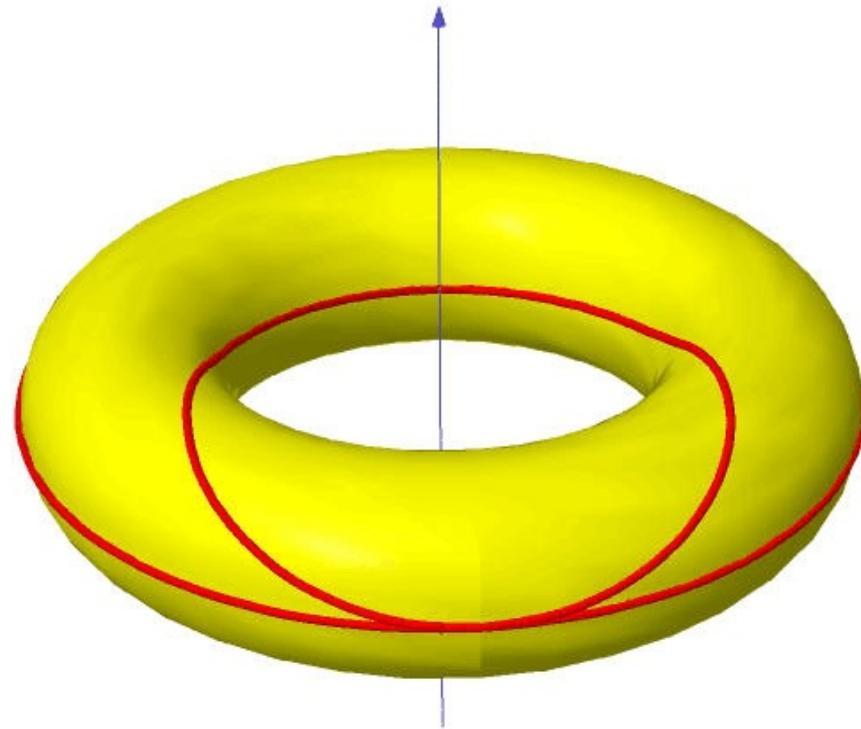


Using this we have two more ways to visualize a function  $f: \mathbb{RP}^1 \rightarrow \mathbb{RP}^1$ :

- The graph of  $f: \mathbb{RP}^1 \rightarrow \mathbb{RP}^1$  is a curve on  $\mathbb{RP}^1 \times \mathbb{RP}^1$  - the torus!

Example:  $f(x) = x^2$ .  $f(\infty) = \infty$ .

[Created with SAGE]



- The mapping diagram of  $f$ , a “surface” with boundaries a circle and a subset of a circle.

Example:  $f(x) = 1/(x^2-1)$ .  $f(\pm 1) = \infty$ .  $f(\infty) = 0$ .

[Created with SAGE]

