Part I Mapping Diagrams for Real Functions Complex Arithmetic |
Part II Complex Functions | Part III Calculus for Complex Functions |
Definition: $\lim_{z \rightarrow z_0} f(z) = L$ means: Given any $\epsilon>0 $ there is a $\delta> 0$ so that if $0 <|z-z_0|<\delta$, then $|f(z)- L|<\epsilon$. Example: $\lim_{z \rightarrow i} z^2 + 2z = -1+2i$ means: Given any $\epsilon>0 $ there is a $\delta> 0$ so that if $0 <|z-i|<\delta$, then $|z^2 +2z +1-2i|<\epsilon$. |