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The Ruie of Three: It is almost obligatory when discussing technology in reform today to
of Three. That is, the rule that states that when possible

mention some form of the Rule
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mathematical concepts should be presented using 1) numerical computation,
visualization, and 3) algebraic/symbolic representation. This rule is useful and seems to
be justified historically by the triumph of many mathematical theories that have been built
by promoting this three fold approach. The rule is however not without danger as a formal
tool for instruction. One may be fooled by this rule. To prevent errors in the application of

the rule of three, I wish to articulute

Rule 0: The application of the rule of three does not guarantee that instruction based on this
rule will succeed. The rule works best when it is applied to some appropriate content
message, a mathematical concept. Let me therefore make explicit a premiss, Rule 0, as a

prerequisite for any application of the Rule of Three.

Rule 0: The Rule of Content and Sense
Before proceeding to develop mathematics using the Rule of Three, have something to
say. Try to have what you say make sense both by itself and with the other parts of

mathematics.




Formal application of the Rule of Three can give the appearance of reform, but without

change a sensible message, the form may deliver only a hollow message of little or no valuc:_'_

to the student.

The Elements of Technological Power: What are the key elements of technology that
students should have within their grasp for working on mathematics? The following list some
key elements in describing a plausible ordering of the levels of control:

0. Arithmetic, core functions, evaluation,

1. a. User defined functions, tables, matrices, graphs.

b. Statistical operations,
2. Interaction of data....(The Rule of Three)
3. Core mathematical operations.
Differentiation / Integration / Sums
4. Logical Control and Programming

In choosing technology for instruction one needs to balance the ease of its use and its
learning curve response time with the technology’s power for robust concept adaptability.
Though slide shows, hypercard applications, and meny driven software are all appropriate for

many situations, students should have access eventually to some software at the fourth leve]
of control,

As with other types of literacy, the development of technological literacy happens in stages.
Initiation to technology may be made gradually with work requiring only level 0 or 1 control,
planning for progressive elevations in the application of the available power as the user
becomes more comfortable with the basic operation of the technology. Materials (such as
- Notebooks in Mathemaiica and model files in other systems) designed for more powerful
technology at level 2 and 3 can operate like menus to prepare the student for later taking full
control. These stages of development may or may not take place on the same technology.

students to powerful technology in a way that encourages them to take more control
themselves. With more control of technology, the user has greater ability to drive the
technology with concepts rather than being limited by the form of application implicit in the

this discussion I will be using X(PLORE), | 1] software developed by David Meredith of San
Francisco State University, previously known as The Calculus Calculator. Though it lacks

some features like symbolic solution of integrals, it would do well in a full evaluation by my
standards. ([.e., I like it.)]
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Transformation Figure for
f(x) = 3x - 4.
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Transformation Figure for
a Composite Function
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TI 81 to the Colossus of Wolfram, Mathematica. Once some initial work is done with this
concept it also becomes fairly easy to expand it’s application to visnalize the ‘composition of
functions [See Figure 2] as well as such basic notions as increasing, decreasing, and 1:1
functions. To the extent that the technology you and your students use cannot adapt to this
concept, it restricts a students’ ability to use this concept to its full advantage.

Tangent Fields, Integral Curves, and Indefi
advanced topic in the calculys curriculum, I will
to visualize the relation given by a differenti

ordinary differential equations in the first year of calculus, many writers now use the concepts

of tangent (or direction) fields and integral curves, an approach that I have discussed for over
10 years. ( For some recent discussion of this see [21, [3], and [5].)
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Tangent Field for
'(x,y) =3x -2y
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Figure 4
Integral Curves
for £'(x,y)= 3x - 2y
A curve that actually graphs a solution for the differential equation is called an integral

curve for the equation. See Figure 4. These two concepts are available with many
technology packages currently available for calculus and can be created without too much

trouble in an environment that has some programiming with graphics. Again the range of
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Figure 5
50 Darts on a
Unit Circle
Throwing darts at this board is simulated using a random number gelierztoihgnilw ifﬁ:;
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a wide range of technology can achieve this interaction, but for some the task will be much
easier to accomplish than others,

Conclusion: With these few examples I hope I have convinced you that there are
mathematical concepts that can distinguish the level of power that technology brings to
problem solving. We should not presume that we can start our students with technology at
these higher levels of power. Our objective however should be to provide opportunities for

our students to see this kind of power and to achieve it progressively as they develop both
mathematical and technology literacy.
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" Introduction

i i de it
ment of powerful and relatively cheap hand held graphics calculators has madc

gr})]:sidtfl\éet!gf graphingp?cchnology to be an integral part of the process of teaching arfld 1c211m1ng
mathematics. However, while this brings with it many potential pedagogic benefits [ h], wle}
also need to be aware that we are bringing about a significant change in practice which wi
have a major impact on students, particularly those brought up in a tradition where .mathemﬁt.lcs
has been viewed primarily as a paper and pencil activity. The impact of introducing gra;; ing
technology on students’ attitude, performance and mathematical behaviour has been the }cl)cus
of an on-going study at Swinburne University of Technology, where graphics calculators lz}ve
been prescribed for first year calculus students since the beginning of the 1991 Austra 1gn
academic year. This paper focuses on some findings related to gender differences in attitude
and performance.

i ing and Implementation Strategy ‘ ‘

%ﬁ: g:ltégﬂglcgsrtste iﬁvolvcd so:phe 350 students studying for a Bachelor of Applied Scwln(():g.
Approximately 35% of the students were female. Instruction consisted of 3 large ggogpl( : -
150) lectures a week and 2 small group (25) tutorials/practice sessions. A typical US Calcu l\l}ls
text was used [2]). Teaching staff were the faculty normally involved in the course. 0 0
changes were made to assessment procedures other than that students were allowed to use (l?:]ll'
graphics calculators in all assessment activities. No fundamental change was made to the
material assessed. The calculator used was the TI-81.

i in attitude and performance
gne]gg:tr_ agiltflfggigﬁfl: introduction of the graphics calculator was assessed through large scalt;
surveys done in both April (mid semester I) and September 1991 (mid semester IT) (acopy o
the survey instrument can be found in Boers & Jones, [3]). Final marks in a calculus course
taken by all the students was used to assess student performance.

z\gt};gldg gender break down of survey responses was made a number of differences in artitude
were revealed [3]. The most important differences were that:

« in the first as well as second semester females rated themselves lower than males in
their mathematical ability. .
(x* = 6.56, df=2, p=0.04 in April, and x° = 5.03, df=2, p=0.08 in September);

« in the second semester there were more females than males who said they were
anxious about mathematics

( % =2.37,df=2, p=0.3 in Apriland x” = 5.96, df=2, p=0.05 in September);

« in both semesters more females said that they found the TI-81 difficult 10 use
(x* =18.40, df=2, p=0.0001 x* =5.78, df=2, p=0.06);
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