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Introduction 

Mapping diagrams were the central theme for four sessions presented 

at BCME9. A mapping diagram is a visual tool for understanding 

functions and equations that provides clarity for several procedures 

and concepts that are not easily treated with a Cartesian graph. The 

argument (input) of a function - an element of the domain (source) 

set – is visualised as a point on a number line (axis).  Separately the 

corresponding value of the function (output) - an element of the 

codomain (target) set is visualised on a second parallel axis. An arrow 

from the input to the output visualises the relation between the two 

numbers, see figure 1. 

A mapping diagram can display many arrows comparable 

to a table, or the point in the domain can be moved with graphic 

technology giving a dynamic visualisation of the function. A 

similar mapping diagram can be created for functions of complex 

numbers by replacing the two axes with two planes visualising the 

complex domain and co-domain, see figure 2.   

The mapping diagrams in the figures and used in the four 

sessions were created using GeoGebra. The content of each 

session will be discussed separately in what follows. Links to 

the GeoGebra Books for all the sessions, references, and many 

other related materials can be found at the website: 

users.humboldt.edu/flashman/Presentations/BCME/BCME.LINKS.html. 

Visualising Quadratic, Cubic, and Quartic Equation Solutions: An Introduction 

to Complex Numbers, Functions, and Mapping Diagrams 

Solving equations is one of the early and dominant tasks presented to students as they 

begin the study of algebra. Starting with linear equations, students learn to solve the 

general quadratic equation and some more accessible cubic and quartic equations with 

little or no visualisation provided. A visual approach is less available when complex 

numbers are introduced to solve even the simple quadratic equation  ! + 1 = 0. In this 

session mapping diagrams of functions are used in two ways: first to visualise the steps 

in the algebraic solution of linear and quadratic equations by recognising the functions 

in these equations as compositions and then to visualise the nature of complex solutions 

to quadratic, cubic, and quartic equations. 

For example solving the linear equation 2 + 1 = 5 is connected to the 

composite mapping diagram for the functions "( ) = 2 #$%&#'( ) =  + 1. The 
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number 5 is represented by a point on the final target axis, and the 

algebraic steps are visualised by reversing the direction of the arrows 

(inverting the functions) of the composition to arrive at the point/number 

solution,   = 2!on the first source axis, see figure 3. 

A quadratic equation represented in the 

“vertex” form, for example, 2( " 1)# + 1 = 9 

also is connected to a mapping diagram for a 

composite of four core functions and the algebraic 

steps for solving the equations are visualised 

similarly when real roots exist (see figure 4) and 

later even for complex roots using complex 

mapping diagrams. 

Cubic, and quartic equations are not solved 

algebraically in the school curriculum but can also 

exhibit complex number roots. For these equations, mapping 

diagrams for complex functions can visualise dynamically 

important connections between the roots and the coefficients of the 

polynomial functions. For example the following mapping 

diagrams (figures 5 and 6) visualise the cubic equation  $ " 1 = 0!has one real root 

and two complex conjugate roots, and the equation  % + 1 = 0! has two pairs of 

complex conjugate roots. 

How Many Ways Can You Solve a Quadratic Equation Visually? From the 

Greeks to 21st Century Technology 

Quadratic equations have a long history, going back at least to the Greeks and Euclid’s 

Elements. The visual solution of these equations starts with finding the defining 

segment (root) for a square with the same area as a given rectangle and the Pythagorean 

Theorem for finding the root for the sum of two squares. Quadratic equations are 

visualised as an unknown square with an attached rectangle 

being equal in area to a given square. The 

ancient solution of this problem used the 

completion of the square in a literal sense, see 

figure 7.  

Later Descartes revolutionised the problem by 

treating the problem as one about lengths of segments where 

the product of segments is visualised by another segment, see 

figure 8. The solution of a quadratic equation is one of the first 

uses Descartes makes of this visualisation, solving the 

problem without any explicit mention of geometric squares - 

though still completing the square with a construction similar 

to that of the ancients.  

The use of the graph of a quadratic function to 

determine the axis of symmetry by shifting the graph 

visualises the process of completing the square, but does not 
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show the actual algebraic steps for solving the equation after that step. The algebraic 

steps are visualised by the mapping diagrams as treated above in the section on solving 

equations. 

Making Sense of Integration Visually: Mapping Diagrams for Calculus 

The tradition of the 20th century was to link the definite integral with finding the area 

of a region in the plane bounded by the graph of a function on a compact interval. An 

alternative treatment connects the definite integral to solving a differential equation and 

the net change in any solution’s value for a compact interval. This second approach is 

closely connected to the dynamics of change and motion that motivated Napier in his 

definition of the logarithm and Newton in his understanding of fluxions. A visualisation 

based on this dynamics approach to the definite integral is nicely done by using 

mapping diagrams. 

Initially the mapping diagram visualises linear functions as a magnification with 

a focus point, see figure 9. The magnification factor for the linear function that defines 

the derivative of a function is then the model for estimating the function for a small 

interval about a number of interest, x=a. This is the differential estimator,  ! =

 !(",  #) = !$(") #. This is also visualised with a mapping diagram showing that  

!(" +  #) % !(") +  & = !(") + !$(") #, see figure 10. 

 

 

 

 

 

To estimate the net change for solving a differential equation 

!$(#) = '(#) over the interval [", *] we use Euler’s method with 

initial condition !(") = 0. The estimated net change will be a sum of 

differentials -/!$(#1)D# = -/'(#1)D# . The accumulation of these 

differentials can be visualised with mapping diagrams, so the sum 

estimates the net change in the value of a solution to the differential 

equation, !(*) 2 !("), see figure 11.This difference is independent 

of the choice of the initial value.  

The limit of these sums defines the definite integral, and so 

the evaluation of the definite integral 3 '(#) #
4

5
 is the net change in 

any solution to the differential equation,-!$(#) = '(#) i.e., we have 

a definition of the definite integral and immediately one form of the Fundamental 

Theorem of Calculus for continuous functions: 3 '(#) #
4

5
= !(*) 2 !(")  with f  

being any continuous function where  -!$(#) = '(#) for all x in [", *]. 

Making Sense of Complex Analysis with Mapping Diagrams: A New 

Visualisation Tool Enhanced by Technology 

It is often said that the task of complex analysis is to generalise the calculus of real 

variables to a calculus for complex variables. The first difficulty encountered in 

complex analysis after visualising complex numbers by identifying them with points in 

a coordinate plane, with  + !"#corresponding to the point ( , !), and making sense of 
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arithmetic for complex numbers is to visualise functions, linear and nonlinear 

elementary functions. Because the real calculus emphasises the graph of the function 

as the main visualisation, at this stage the difficulty of a graph for complex functions is 

primarily that of visualising a four dimensional Euclidean space where the graph of a 

complex function would appear as quadruple of real numbers- 
( ,!, ", #): $%&'&*+( - .!) = " - .#. By using mapping diagrams to visualise and 

understand real functions, the visualisation of complex functions can be handled 

comparably without needing “four dimensions”. 

Linear functions are the key to both differentiation 

and integration of complex functions as they were for real 

functions. Mapping diagrams for complex multiplication 

arise from an amplification from a focus point – the vertex of 

a cone and a twist-rotation resulting from the angle 

determined by the complex number multiplier, see figure 12.  

The magnification factor for the linear function that 

defines a complex function’s derivative is the model for 

estimating that function for a small disc about a number of 

interest, z = a + bi, that is the differential estimator,  ! =
 "(# + $%,  &) = "'(# + $%) &. This is visualised with a 

complex function mapping diagram showing "(# + $% +
 &) * "(# + $%) +  ! = "(# + $%) + "'(# + $%) & in 

figure 13, "(&) = &-, # + $% = %, #. / & = 1 + 025%2 
The line integral for complex analysis is determined 

along a curve γ in the complex plane given parametrically 

by estimating the net change for solving a differential 

equation "'(&) = 3(&) over the defining interval [#, $] for 

the curve’s parameters. As with the real integral we use Euler’s method with initial 

condition "(4(#)) = 02 The estimated net change will be a sum of complex 

differentials, /6"'(&7)D& = /63(&7)D& . The accumulation of these differentials can 

be visualised with mapping diagrams, so the sum estimates the line integral over the 

curve, 8 3(&) &
9

, the net change, "(4($)) : "(4(#)), where f is a solution to the 

differential equation. The visualisations for the line integral can help see this 

accumulative limit, see figures 14 and 15.  

 

 

 

 

 

 

 

Not the End. Only a Beginning 

This meagre summary cannot capture the power of dynamic figures to 

visualise the concepts covered in the sessions, nor can it show other concepts 

that mapping diagrams support. These can be found in the materials linked 

initially in this summary or by the reader in their own future explorations.  

Figure 12. Mapping Diagram 

for f(z) = (2+i)z applied to 

the circle |z|=1. 

Figure 13.Mapping Diagram for 

Differential: f(z)=z2, z=i,  

dz=1+0.5i. 

Figure 15.Mapping Diagram for Integral 
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 !

"
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