ATM 2016 Conference Using Mapping Diagrams to Make Sense of Functions and <u>Equations</u> March 31, 2016 EF3 E 9:00-10:30 F 11:00-12:30 Martin Flashman Professor of Mathematics Humboldt State University

Arcata, California

flashman@humboldt.edu_

http://users.humboldt.edu/flashman

<u>Abstract</u>

<u>Participants will learn how to use mapping</u> <u>diagrams (MD) to make sense of functions and</u> <u>equations.</u>

<u>A mapping diagram is an alternative to a</u> <u>Cartesian graph that visualizes a function. Like a</u> <u>table, it can present finite data, but also can be</u> <u>used dynamically with technology.</u>

<u>An overview of basic function concepts with</u> <u>MD's will begin the session using GeoGebra</u>, <u>followed by connections of MD's to solving</u> <u>linear and quadratic equations</u>.

<u>Abstract</u>

Background and examples are available at Mapping Diagrams from A(lgebra) B(asics) to C(alculus) and D(ifferential) E(quation)s. A Reference and Resource for Function Visualizations Using Mapping Diagrams.

http://users.humboldt.edu/flashman/MD/sec

<u>ATM 2016 Conference</u> <u>Using Mapping Diagrams to Make Sense of</u> <u>Functions and Equations</u>

<u>Link</u> to Presentation Files:

http://users.humboldt.edu/flashman/Presentations/ATM/ATM.LINKS.html

to GeoGebra File:

https://www.geogebra.org/apps/?id=JkqNduU9

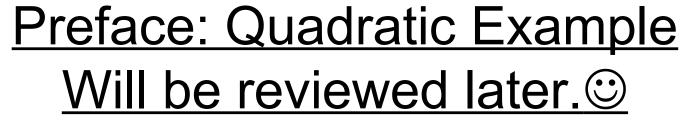
Background Questions

Thumbs Up or Down...

- 1. <u>Are you familiar with Mapping Diagrams?</u>
- 2. <u>Have you used Mapping Diagrams to teach</u> <u>functions?</u>
- 3. <u>Have you used Mapping Diagrams to teach</u> <u>content besides function definitions?</u>

Mapping Diagrams

<u>A.k.a.</u> Function Diagrams Dynagraphs



g(*x*) = 2 (*x*-1)² + 3 <u>Steps for g:</u> 1. <u>Linear:</u> <u>Subtract 1.</u> 2. <u>Square result.</u>

3. Linear:

<u>Multiply by 2</u> <u>then add 3.</u>

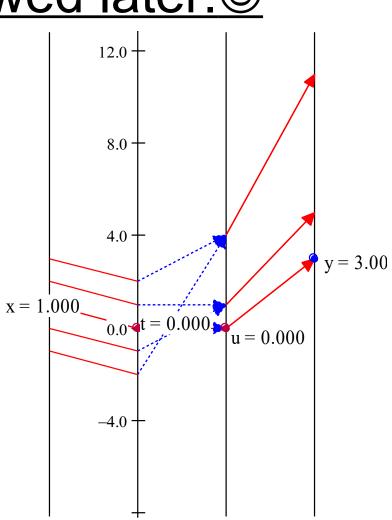
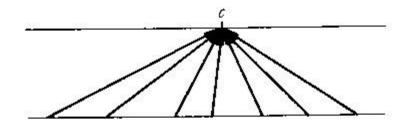


Figure from Ch. 5 Calculus by M. Spivak



(a) f(x) = c

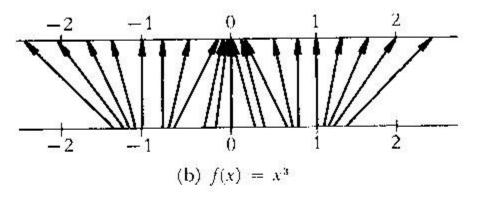


FIGURE 2

<u>Main Resource</u>

- <u>Mapping Diagrams from A(lgebra)</u> B(asics) to C(alculus) and D(ifferential) E(quation)s. A Reference and Resource Book on Function Visualizations Using Mapping Diagrams (Preliminary Sections- NOT YET FOR publication)
- <u>http://users.humboldt.edu/flashman/MD/section-1.1VF.html</u>

<u>i. m (x) = mx; m=2</u>

<u>ii.</u> s(x) = x + b; b=1

$$iii.\underline{f(x)} = \underline{mx + b}$$
$$= \underline{s(m(x))}$$
$$= 2x + 1$$

<u>Distribute Worksheet</u>

Thumbs up when you are ready to proceed.

<u>Old Friends:</u> Linear Function Examples

- <u>Worksheet 1.a</u>
- <u>Make tables for m(x) = 2x and s(x) = x+1</u>

X	m(x) =2x
2	
1	
0	
-1	
-2	

X	s(x) =x+1
2	
1	
0	
-1	
-2	

Function Tables

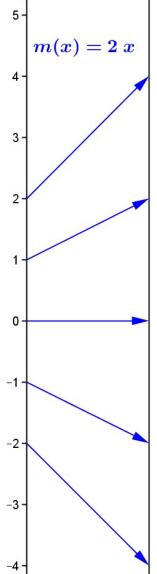
- <u>Worksheet 1.a</u>
- <u>Make tables for m(x) = 2x and s(x) = x + 1</u>

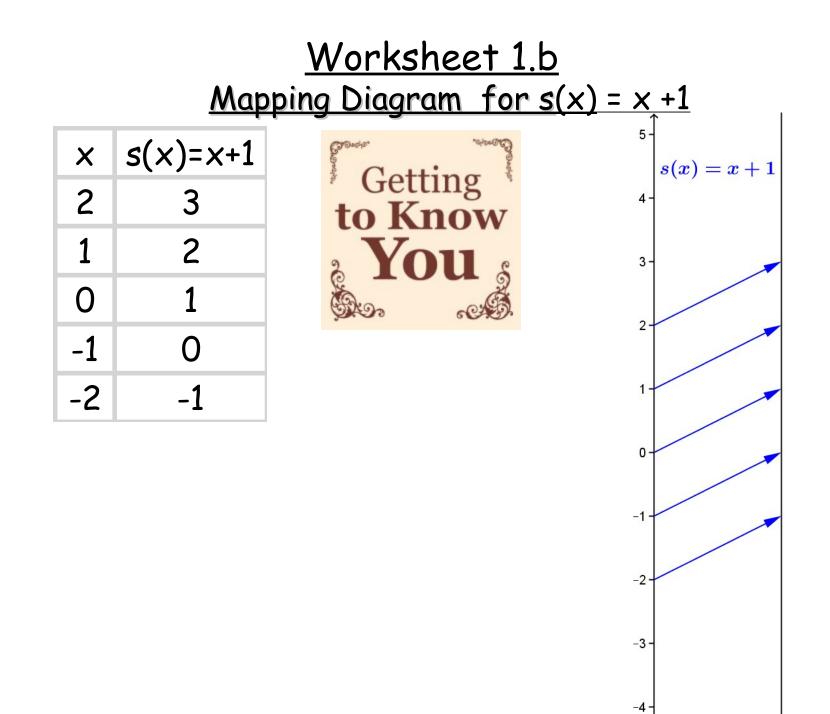
X	m(x) =2x
2	4
1	2
0	0
-1	-2
-2	-4

X	s(x) =x+1
2	3
1	2
0	1
-1	0
-2	-1

<u>Worksheet 1.b</u> <u>Mapping Diagram for m(x) = 2x</u> m(x) = 2x

X	m(x) = 2x
2	4
1	2
0	0
-1	-2
-2	-4



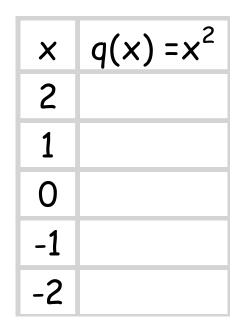


Mapping Diagram Prelim

Examples of mapping diagrams

- Worksheet 2

 $-\underline{a}$. First make table for $q(x) = x^2$.



Mapping Diagram Prelim

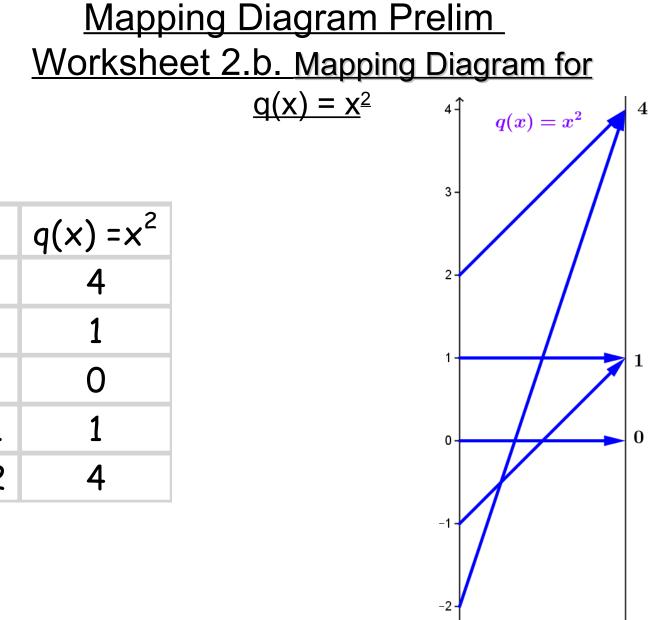
Examples of mapping diagrams

- Worksheet 2

- a. First make table for q.

×	$q(x) = x^2$
2	4
1	1
0	0
-1	1
-2	4

-b. Sketch a mapping diagram for $q(x) = x^2$.



<u>Worksheet 3.a.Complete the following table for the</u> <u>composite function f(x) = s(m(x)) = 2x + 1</u>

x	m(x)	f(x)=s(m(x))
2		
1		
0		
-1		
-2		

<u>Worksheet 3.a.Complete the following table for</u> <u>the composite function f(x) = s(m(x)) = 2x + 1</u>

X	m(x)	f(x)=s(m(x))
2	4	5
1	2	3
0	0	1
-1	-2	-1
-2	-4	-3

Mapping Diagram Prelim

- Worksheet 3.b
- Use the table 3.a and the previous sketches of 1.b to draw a composite sketch of the mapping diagram with 3 axes for the composite function f(x) = h(g(x)) = 2x + 1

<u>Worksheet 3.b Draw a sketch for the mapping</u> <u>diagram with 3 axes of f(x) = 2x + 1.</u>

>

X	m(x)	f(x)=s(m(x))
2	4	5
1	2	3
0	0	1
-1	-2	-1
-2	-4	-3

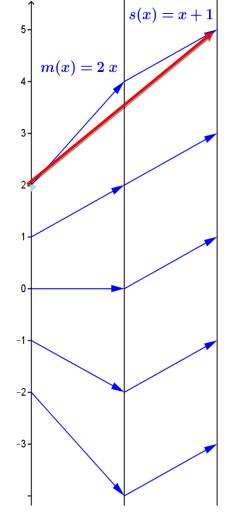
	<u>Wc</u>		<u>Draw a sketch for t</u>	•••
		<u>diagram w</u>	<u>vith 3 axes of f(x) =</u>	<u>2 x + 1.</u>
×	m(x)	f(x)=s(m(x))	Cuerrie	s(x) = x + 1
2	4	5	Getting to Know	$ \begin{array}{c} \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \end{array} $
1	2	3		3-
0	0	1	You	2
-1	-2	-1	Shon constr	1
-2	-4	-3		

-2-

-3-

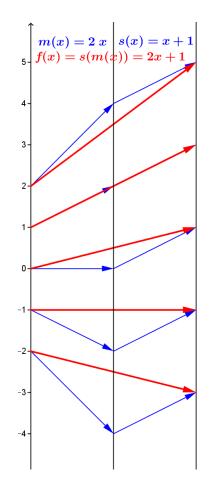
<u>Worksheet 3.c Draw a sketch for the mapping</u> <u>diagram with 2 axes of f(x) = 2x + 1.</u>

X	m(x)	f(x)=s(m(x))
2	4	5
1	2	3
0	0	1
-1	-2	-1
-2	-4	-3



<u>Mapping Diagram for f(x) = s(m(x)) = 2x + 1</u>

X	m(x)	f(x)=s(m(x))
2	4	5
1	2	3
0	0	1
- 1	-2	-1
-2	-4	-3

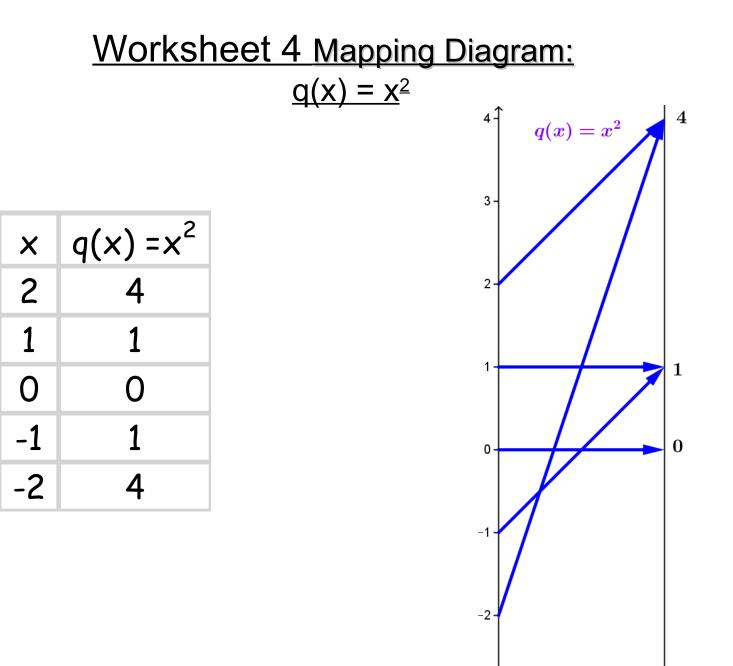


Technology Examples

• Excel example

Link to GeoGebra File

https://www.geogebra.org/apps/?



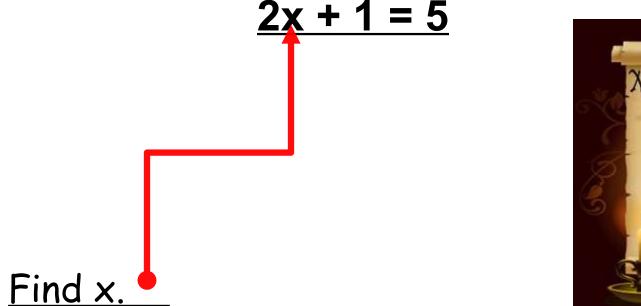
Worksheet 4.b

 4.b Using the data from part a), sketch mapping diagrams for the composition $R(x) = s(q(x)) = x^2 + 1$ with three axes x + 1 $q(x) = x^2$ 4 3 - $\mathbf{2}$ 2 1 0 -1

Worksheet 4.b

• <u>4.b Using the data from part a), sketch</u> mapping diagrams for the composition $R(x) = s(q(x)) = x^2 + 1$ with two axes. *** Part I *** Mapping Diagrams and Solving A Linear Equation.

• <u>Worksheet 5.a Solve a linear equation:</u>

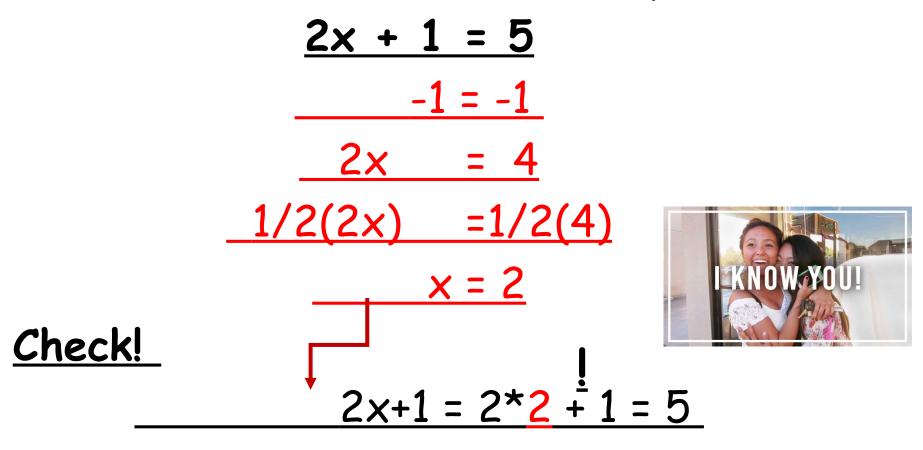


Worksheet 5.a Solve a linear equation:

 $\frac{2x + 1 = 5}{-1 = -1}$ 2x = 4

Worksheet 5.a Solve a linear equation: 2x + 1 = 5 -1 = -1 2x = 4 1/2(2x) = 1/2(4) x = 2

Worksheet <u>5.a Solve a linear equation</u>:



<u>Linear Equations Use</u> <u>Linear Functions!</u>

<u>Linear Equations</u> 2x + 1 = 52x 1/2(2x) = 1/2(4)x = 2 Check: $2x + 1 = 2^{2} + 1 = 5$

<u>Linear Functions</u> $\frac{f(x) = 2x + 1}{2}$

So, we meet again!

Demotivation.us

joyreactor.com

<u>Linear Equations</u> <u>Use Linear Functions!</u>

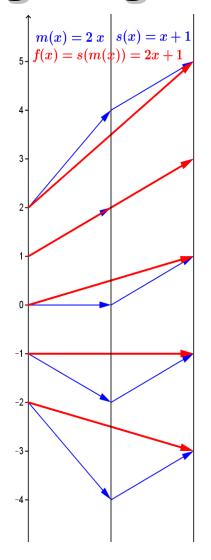
Linear Equations
2x + 1 = 5
<u> </u>
<u>2x = 4</u>
<u>1/2(2x) =1/2(4)</u>
<u>x = 2</u>
<u>Check:</u>
<u>2x + 1 = 2*2 + 1 = 5</u>

Linear Functions

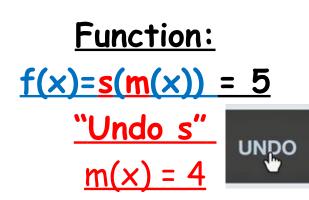
<u>f(x) = 2x + 1</u>

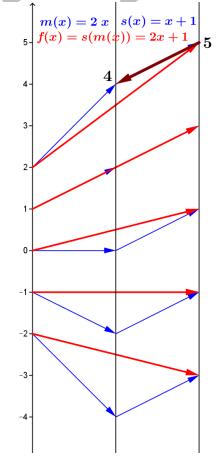
 $\underline{m(x)} = 2x; \ \underline{s(x)} = x + 1$ $\underline{f(x)} = \underline{s(m(x))}$

<u>Algebra:</u> 2x + 1 = 5 -1 = -1 2x = 4 1/2(2x) = 1/2(4)x = 2 <u>How does the</u> <u>MD for the</u> <u>function</u> <u>VISUALIZE</u> <u>the algebra?</u>



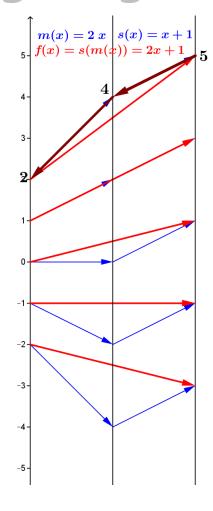
<u>Algebra:</u>			
<u>2x +</u>	1	=	5
	-1	=	-1
2x		=	4





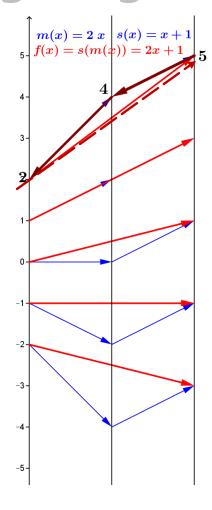
<u>Algebra:</u> 2x + 1 = 5 -1 = -1 2x = 4 1/2(2x) = 1/2(4)x = 2

Function: f(x)=s(m(x)) = 5<u>"Undo s"</u> m(x) = 4<u>"Undo m"</u> UNDO <u>x = 2</u>



<u>Algebra:</u> 2x + 1 = 5 -1 = -1 2x = 4 1/2(2x) = 1/2(4)x = 2

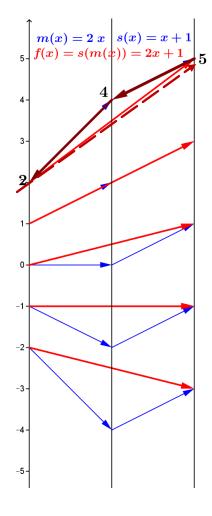
Function: f(x)=s(m(x)) = 5<u>"Undo s"</u> m(x) = 4<u>"Undo m"</u> UNDO <u>x = 2</u> CHECK! O <u>f(2)=5</u>



<u>Worksheet 5.b Solving 2x + 1 = 5</u> <u>visualized on GeoGebra</u>

<u>Algebra:</u> 2x + 1 = 5 -1 = -1 2x = 4 1/2(2x) = 1/2(4)x = 2

Function: f(x)=s(m(x)) = 5<u>"Undo s"</u> m(x) = 4<u>"Undo m"</u> UNDO <u>x = 2</u> CHECK! O <u>f(2)=5</u>



End of Part I Mapping Diagrams and Solving A Linear Equation. *** Part II *** Mapping Diagrams and Solving A Quadratic Equation.

<u>Worksheet 6.a Solve 2(x-3)² + 1 = 9</u> with a mapping diagram

<u>Understand the problem</u>

Pause for Discussion.

<u>Worksheet 6.a Solve 2(x-3)² + 1 = 9</u> with a mapping diagram <u>Understand the problem</u>

 $-2(x-3)^2 + 1$ is a function of x.

- $P(x) = 2(x-3)^2 + 1$
- Find any and all x where P(x) = 9.
- $-2(x-3)^{2} + 1$ is a composition of functions
 - P(x) = s(m(q(z(x)))) where
 - <u>z(x) =</u>
 - <u>q(x) =</u>
 - <u>m(x) =</u>
 - <u>s(x) =</u>

<u>Worksheet 6.a Solve 2(x-3)² + 1 = 9</u> with a mapping diagram <u>Understand the problem</u>

- $-2(x-3)^2 + 1$ is a function of x.
 - $P(x) = 2(x-3)^2 + 1$
- Find any and all x where P(x) = 9.
- $-2(x-3)^{2} + 1$ is a composition of functions
 - P(x) = s(m(q(z(x)))) where
 - $\underline{z(x)} = x-3;$
 - $q(x) = x^2$;
 - <u>m(x) = 2x;</u>
 - s(x) = x+1.

<u>Worksheet 6.a</u> <u>Solve 2(x-3)² + 1 = 9</u> with a mapping diagram. <u>Make a plan</u>

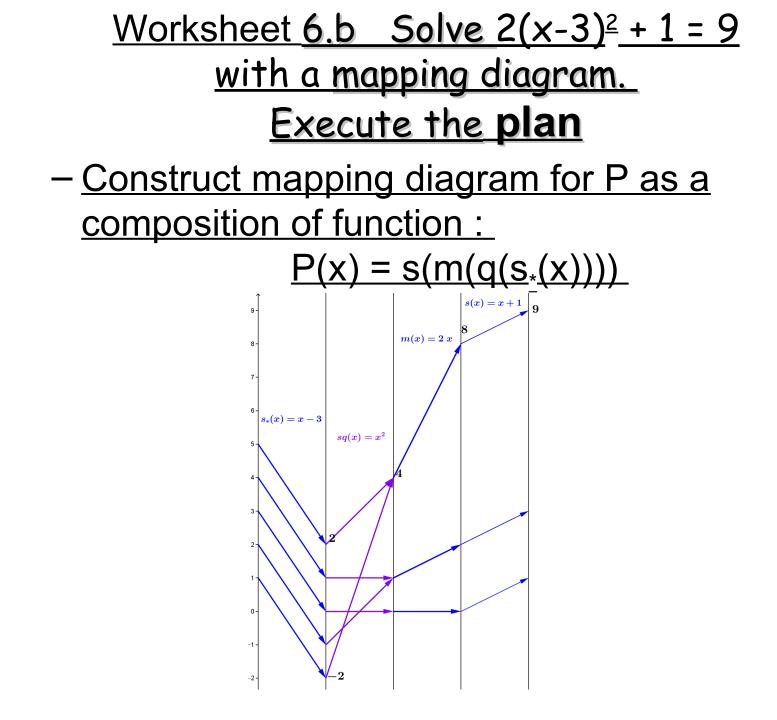
- Find any and all x where P(x) = 9.
- Construct mapping diagram for P as a composition of function : P(x) = s(m(q(z(x))))
- -<u>Undo P(x) = 9 by undoing each step of P</u>
 - Undo s(x) = x+1
 - <u>Undo m(x) = 2x</u>
 - Undo $q(x) = x^2$
 - Undo z(x) = x-3

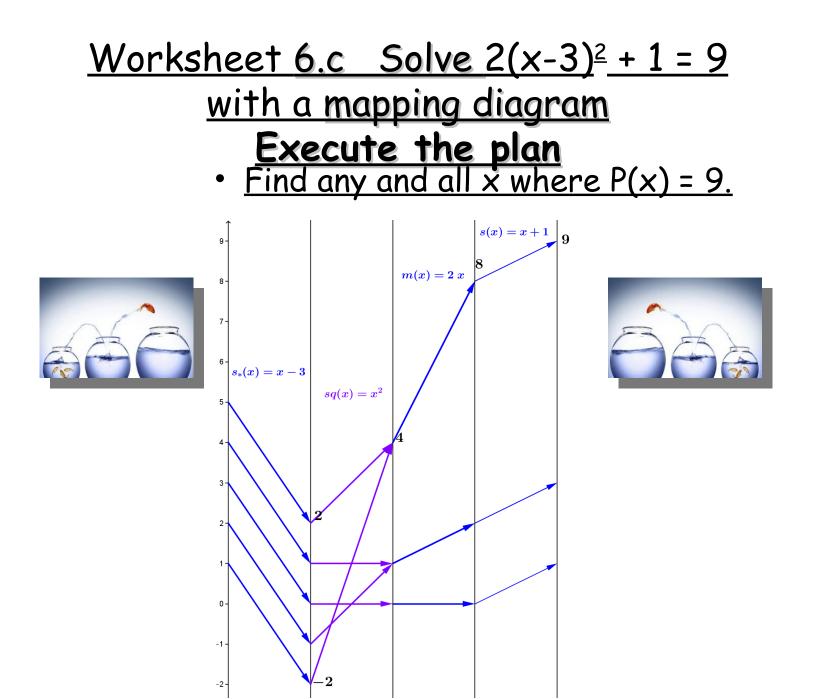
-<u>Check results to see that P(x) = 9</u>

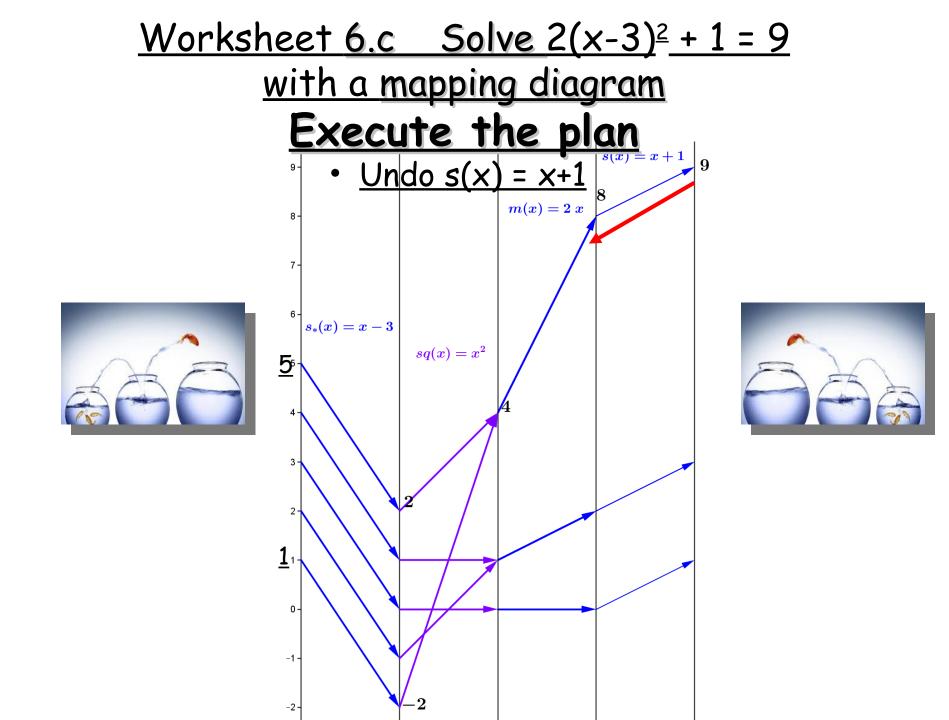
Worksheet 6.bSolve $2(x-3)^2 + 1 = 9$ with a mapping diagram.Execute the plan

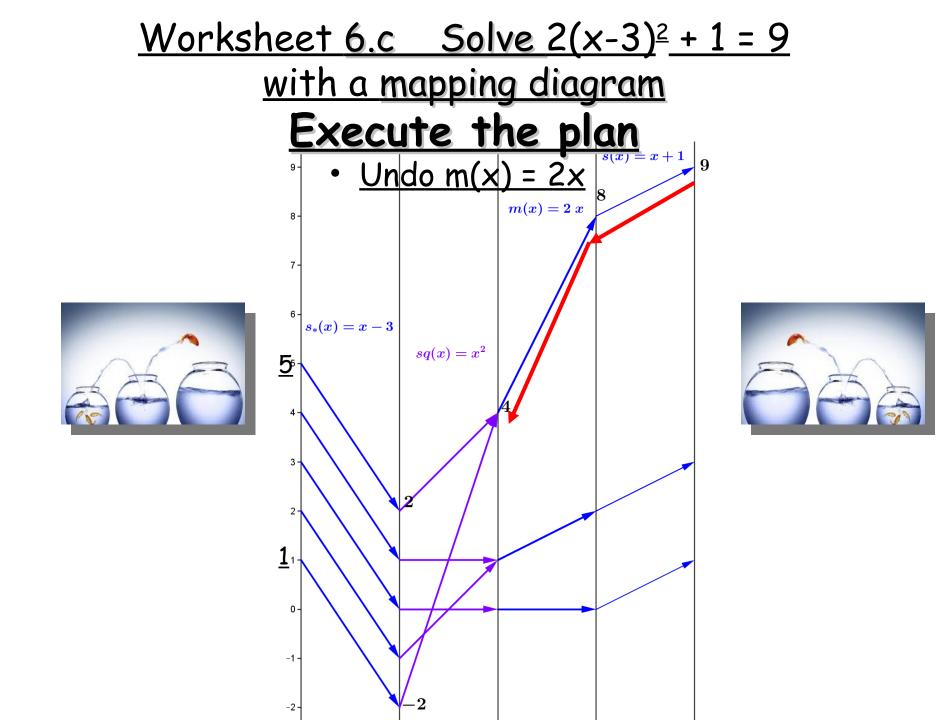
 <u>Construct mapping diagram for P as a</u> <u>composition of function :</u>

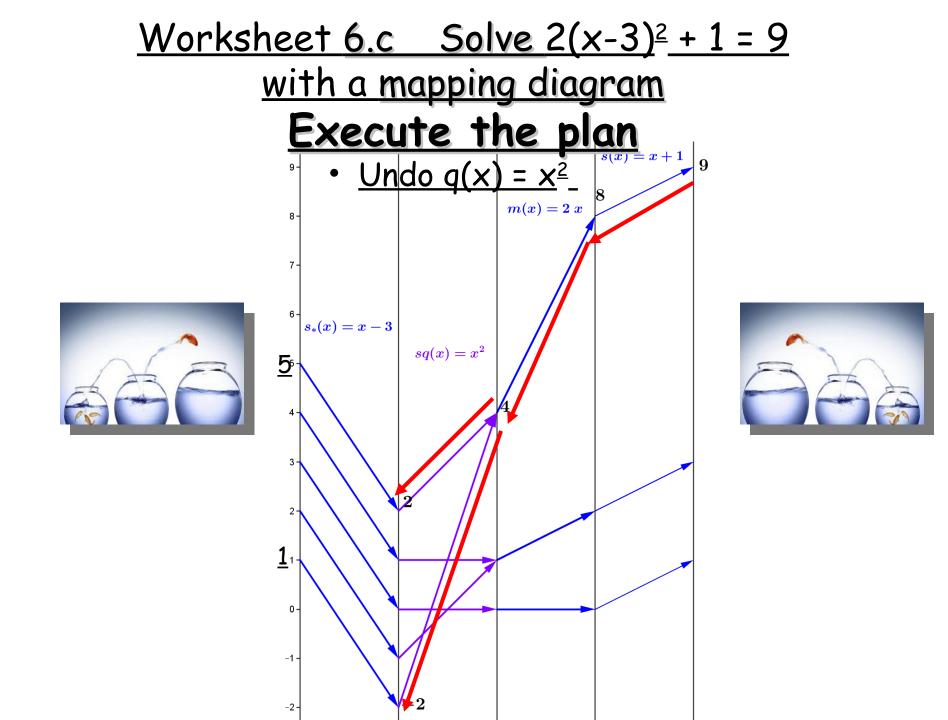
 $\underline{P(x) = s(m(q(z(x))))}$

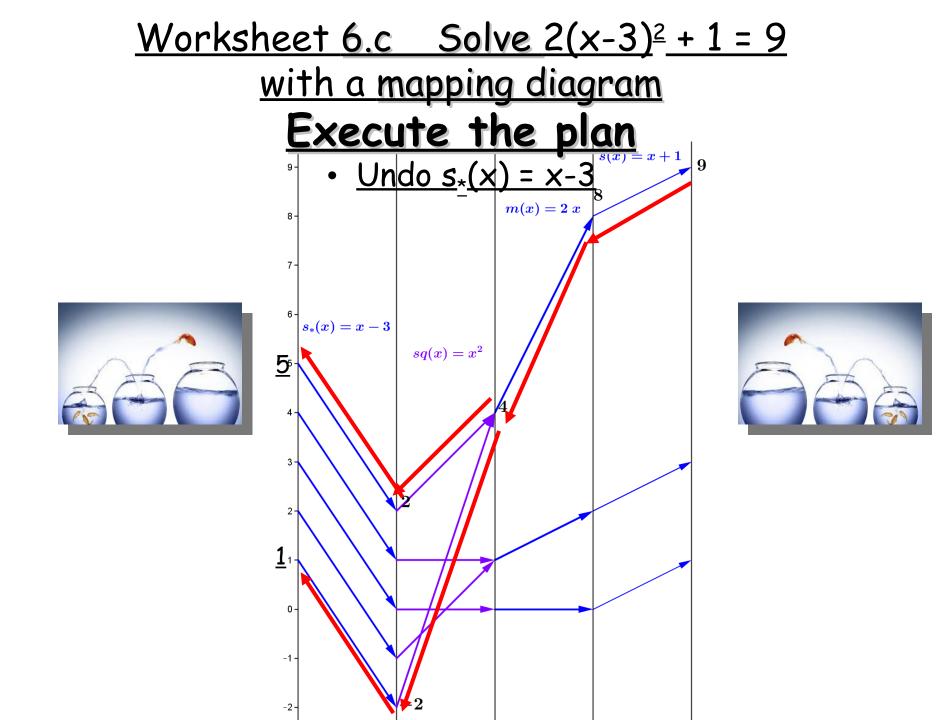


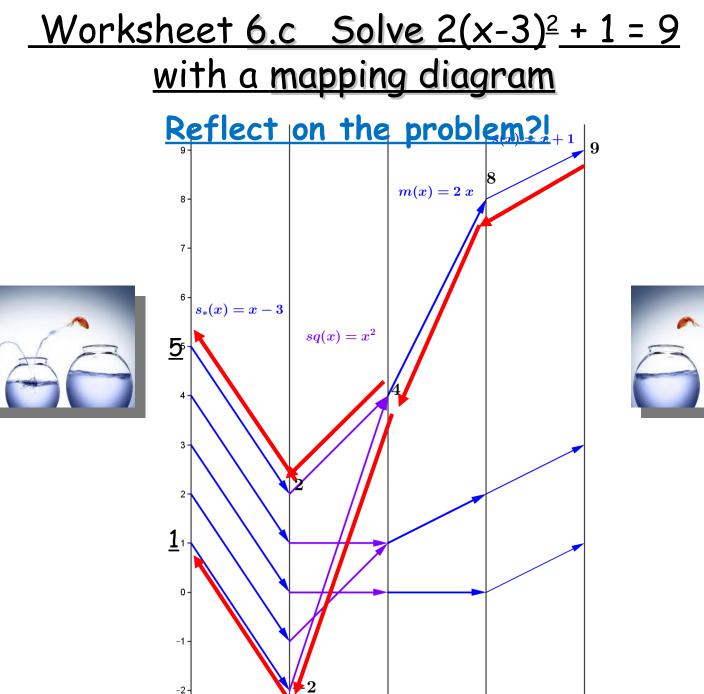


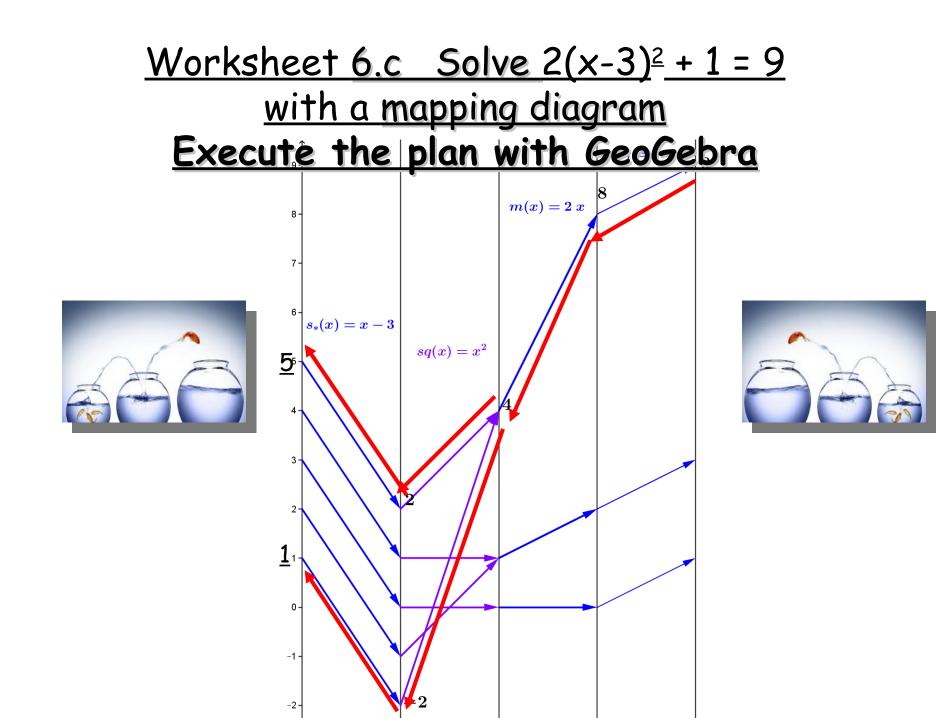












*** Part III *** A Second Approach: Linear Mapping Diagrams and Solving Linear Equations.

Simple Examples are important!

- f(x) = x + C Added value: C
- <u>f(x) = mx</u> Scalar Multiple: m Interpretations of m:
 - <u>slope</u>
 - <u>rate</u>
 - Magnification factor
 - m > 0 : Increasing function
 - <u>m < 0 : Decreasing function</u>
 - <u>m = 0 : Constant function</u>

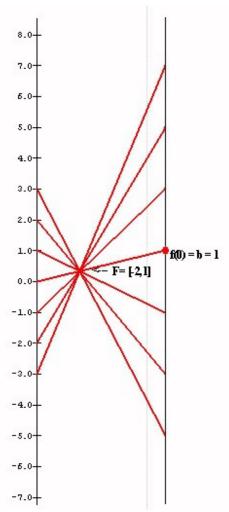
Simple Examples are important!

- f(x) = mx + b with a mapping diagram --Five examples: Back to Worksheet Problem #7
- Example 1: m =-2; b = 1: f(x) = -2x + 1
- Example 2: m = 2; b = 1: f(x) = 2x + 1
- Example 3: $m = \frac{1}{2}$; b = 1: $f(x) = \frac{1}{2}x + 1$
- Example 4: m = 0; b = 1: f(x) = 0 x + 1
- Example 5: m = 1; b = 1: f(x) = x + 1

<u>Visualizing f (x) = mx + b with a mapping</u> <u>diagram -- Five examples:</u>

Example 1: m = -2; b = 1
$$f(x) = -2x + 1$$

- Each arrow passes through a single point, which is labeled F = [- 2,1].
 - The point F completely determines the <u>function f.</u>
 - given a point / number, x, on the source <u>line</u>,
 - there is a unique arrow passing through
 F
 - meeting the target line at a unique point / number, -2x + 1,



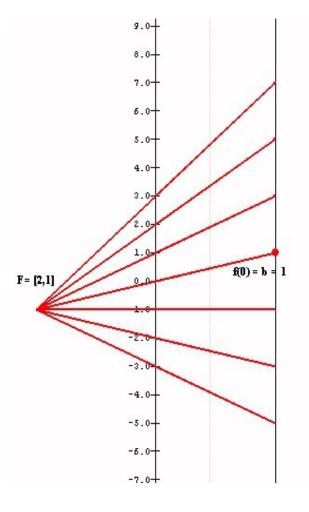
<u>Visualizing f (x) = mx + b with a</u> mapping diagram -- Five examples:

Example 2:
$$m = 2; b = 1$$

 $f(x) = 2x + 1$

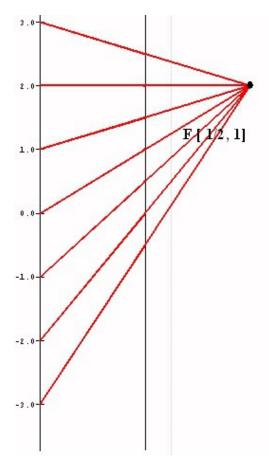
<u>Lach arrow passes through a single</u> <u>point, which is labeled</u>

- The point F completely determines the function <u>f</u>.
 - given a point / number, x, on the source <u>line</u>,
 - there is a unique arrow passing through <u>F</u>
 - meeting the target line at a unique point / number, 2x + 1,



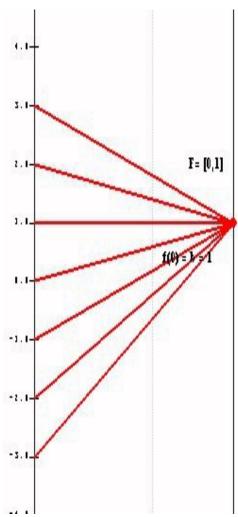
<u>Visualizing f (x) = mx + b with a</u> mapping diagram -- Five examples:

- Example 3: m = 1/2; b = 1 $f(x) = \frac{1}{2}x + 1$
- Each arrow passes through a single point, which is labeled F = [1/2,1].
 - The point F completely determines the <u>function</u> f.
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through F
 - meeting the target line at a unique point / number, $\frac{1}{2}x + 1$,



Visualizing f (x) = mx + b with a mapping diagram -- Five examples: Example 4: m = 0; b = 1 f(x) = 0 x + 1

- Each arrow passes through a single point, which is labeled F = [0,1].
 - The point **F** completely determines the <u>function</u> *f*.
 - given a point / number, x, on the source <u>line</u>,
 - there is a unique arrow passing through F
 - meeting the target line at a unique point / number, f(x)=1,



<u>Visualizing f (x) = mx + b with a</u> <u>mapping diagram -- Five examples</u> <u>Example 5: m = 1; b = 1</u>

f(x) = x + 1

- Unlike the previous examples, in this case it is not a single point that determines the mapping diagram, but the single arrow from 0 to 1, which we designate as F[1,1]
- <u>It can also be shown that this single arrow completely determines the function. Thus, given a point / number, x, on the source line, there is a unique arrow passing through x parallel to F[1,1] meeting the target line a unique point / number, x + 1, which corresponds to the linear function's value for the point/number, x.</u>
 - The single arrow completely determines the function *f*.

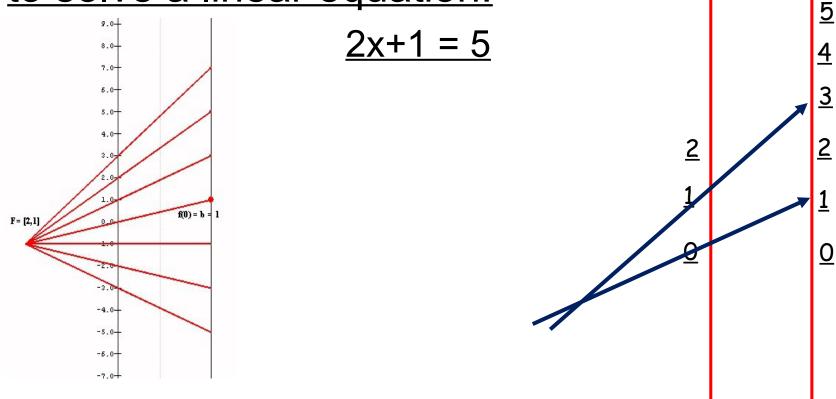
-1.1

-3.1

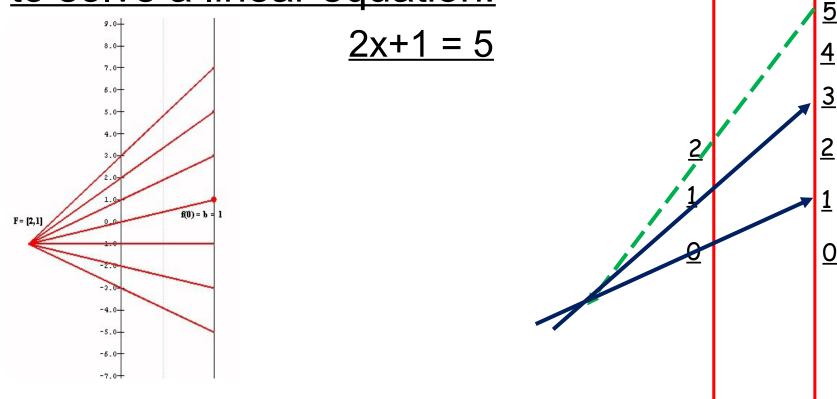
- given a point / number, x, on the source line,
- there is a unique arrow through x parallel to F[1,1]
- meeting the target line at a unique point / number, x + 1,

 Use a focus point in the mapping diagram to solve a linear equation:

<u>Use a focus point in the mapping diagram</u>
 <u>to solve a linear equation:</u>



 Use a focus point in the mapping diagram to solve a linear equation:



Suppose f is a linear function with f (1) = 3 and f (3) = -1.

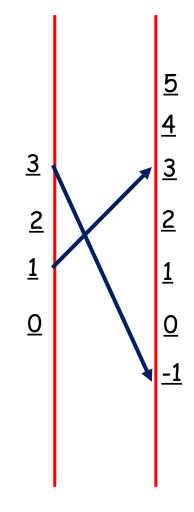
Without algebra

- 8.b Use a focus point to find f (0).
- $-\frac{8.c \text{ Use a focus point to find x}}{where f(x) = 0.}$

Suppose f is a linear function with f (1) = 3 and f (3) = -1.

Without algebra

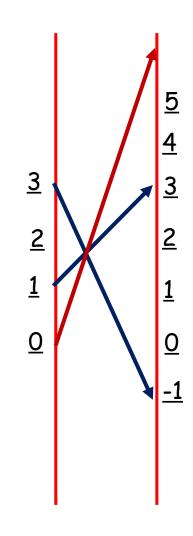
- 8.b Use a focus point to find f (0).
- $-\frac{8.c \text{ Use a focus point to find x}}{where f(x) = 0.}$



Suppose f is a linear function with f (1) = 3 and f (3) = -1.

Without algebra

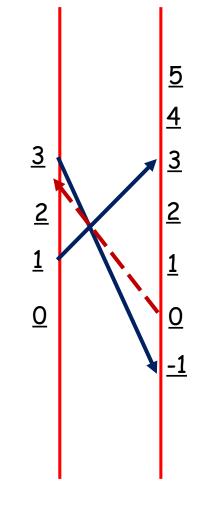
- <u>8.b Use a focus point to find f (0).</u>



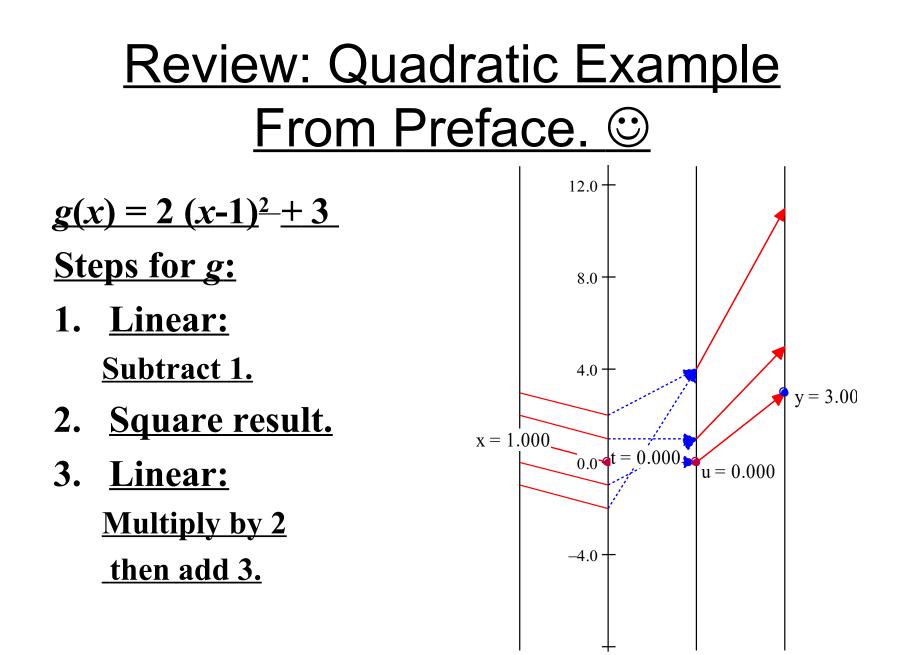
Suppose f is a linear function with f (1) = 3 and f (3) = -1.

Without algebra

 $-\frac{8.c \text{ Use a focus point to find x}}{where f(x) = 0.}$



*** End of Part III *** A Second Approach: Linear Mapping Diagrams and Solving Linear Equations. *** Part IV *** A Second Approach: Quadratic Mapping Diagrams and Solving Quadratic Equations.



Quadratic Functions

- <u>Usually considered as a key example of the</u> <u>power of analytic geometry- the merger of</u> <u>algebra with geometry.</u>
- <u>The algebra of this study focuses on two</u> <u>distinct representations of these functions</u> <u>which mapping diagrams can visualize</u> <u>effectively to illuminate key features.</u>

$$- \frac{f(x) = Ax^{2} + Bx + C}{- f(x) = A (x-h)^{2} + k}$$

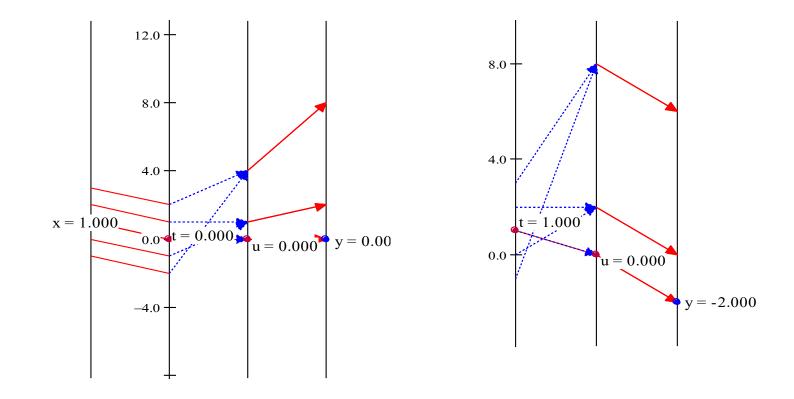
Examples

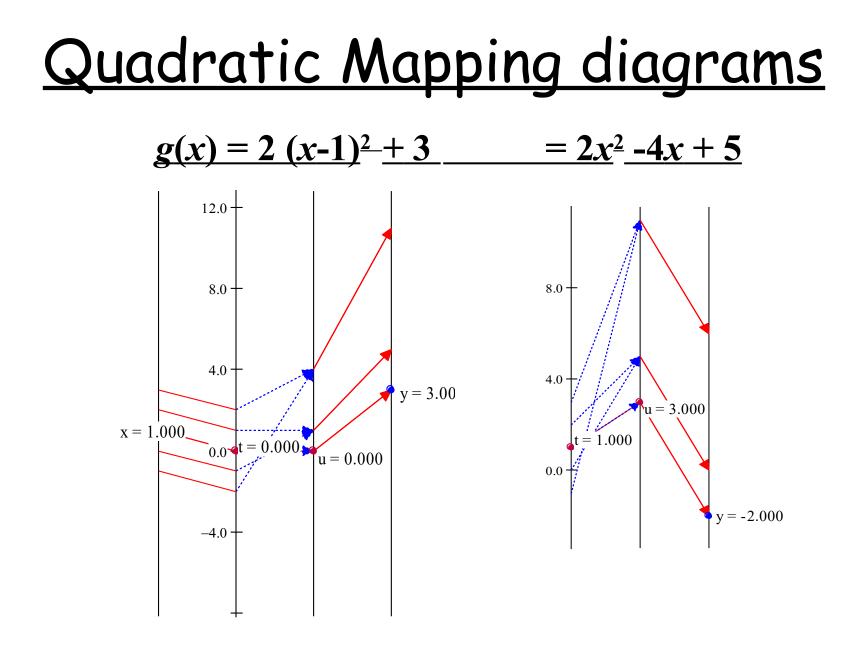
• Use compositions to visualize $- f(x) = 2 (x-1)^2 = 2x^2 - 4x + 2$

$$- g(x) = 2 (x-1)^2 + 3 = 2x^2 - 4x + 5$$

- <u>Observe how even symmetry is</u> <u>transformed.</u>
- <u>These examples illustrate how a mapping</u> <u>diagram visualization of composition with</u> <u>linear functions can assist in understanding</u> <u>other functions.</u>

Quadratic Mapping diagrams $f(x) = 2 (x-1)^2 - 2x^2 - 4x + 2$





<u>Quadratic Equations and Mapping</u> <u>diagrams</u>

- Solve $f(x) = Ax^2 + Bx + C = 0$.
- <u>Plan:</u> Find 0 on the target axis, then trace back on any and all arrows that "hit" 0.
- <u>Question</u>: How does this connect to
 x = -B/(2A) for symmetry and the issue of the number of solutions?

Think about These Problems

- M.1 How would you use the Linear Focus to find the mapping diagram for the function inverse for a linear function when m≠0?
- M.2 How does the choice of axis scales affect the position of the linear function focus point and its use in solving equations?
- <u>M.3</u> Describe the visual features of the mapping diagram for the quadratic function $f(x) = x^2$. How does this generalize for *even* functions where f(-x) = f(x)?

<u>M.4 Describe the visual features of the mapping diagram for the cubic</u> <u>function $f(x) = x^3$.</u> How does this generalize for *odd* functions where f(-x) = -f(x)?

MoreThink about These Problems

- L.1 Describe the visual features of the mapping diagram for the quadratic function $f(x) = x^2$. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.2 Describe the visual features of the mapping diagram for the quadratic function $f(x) = A(x-h)^2 + k$ using composition with simple linear functions. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- <u>L.3 Describe the visual features of a mapping diagram for the square root function $g(x) = \sqrt{x}$ and relate them to those of the quadratic $f(x) = x^2$. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?</u>
- **L.4** Describe the visual features of the mapping diagram for the reciprocal function f(x) = 1/x.

Domain? Range? "Asymptotes" and "infinity"? Function Inverse?

L.5 Describe the visual features of the mapping diagram for the linear fractional function f(x) = A/(x-h) + k using composition with simple linear functions. Domain? Range? "Asymptotes" and "infinity"? Function Inverse?

<u>Questions?</u> <u>flashman@humboldt.edu</u> http://www.bumboldt.edu/~met

http://www.humboldt.edu/~mef2