AEF.COMP Composition and Elementary Functions
The elementary functions are defined initially from a list of core
functions.
The definition continues with a recursive formulation,
building more elementary functions from previously defined elementary functions by using arithmetic
operations, composition of functions, and inverting functions.
In this section we focus on visualizing the composition of functions
with mapping diagrams to make sense of elementary functions formed by using composition.
Visualizing composition of functions with mapping diagrams is not a new concept. It was covered first in the section on linear functions, specifically in the subsection LF.COMP:
Composition of Linear Functions. In fact, linear composition has been discussed in almost every section of this resource!
Recall the definition:
The composition of $f$
with $g$ , denoted usually as $f \circ g$ is defined by $f \circ g (x)= f(g(x))$ where $f \circ g : x \rightarrow g(x)
\rightarrow f(g(x))$.
Two examples.
In these two examples we use GeoGebra to visualize composition for nonlinear functions.
You can use this next example
with user defined functions for $f$ and $g$ to investigate further the effects of composition in a
mapping diagram of $f \circ g$ or $g \circ f$.
Example
AEF.DCOMP.0 Dynamic Visualization of Composition for Functions: Graphs, and Mapping Diagrams