Click on this link for a file that has Mapping Diagram blanks (2 and 3 axes) for use in the following exercises.
You may want to try this using a spreadsheet. You can download a spreadsheet template for linear functions by clicking here.
Download worksheet for this section: Worksheet.LF.pdf.
  1. For each  linear function complete the function table and then create the corresponding mapping diagram and locate the "focus point" (possibly infinite).

    a.
    $x$
    $f(x)=2x$
    2

    1

    0

    -1

    -2

     
    b.
    $x$
    $f(x)= -2x$
    2

    1

    0

    -1

    -2

     
     c.
    $x$
    $f(x)= -x + 1$
    2

    1

    0

    -1

    -2

    d.
    $x$
    $f(x)= x+1$
    2

    1

    0

    -1

    -2

  2. For each  linear function complete the function table and then create the corresponding mapping diagram and locate the focus point.

    a.
    $x$
    $f(x)=\frac 1 2 x$
    2

    1

    0

    -1

    -2

     
    b.
    $x$
    $f(x)=-\frac 1 2 x$
    2

    1

    0

    -1

    -2

     
     c.
    $x$
    $f(x)=\frac 1 2 x + \frac 1 2$
    2

    1

    0

    -1

    -2

    d.
    $x$
    $f(x)=-\frac 1 2 x + \frac 1 2$
    2

    1

    0

    -1

    -2

  3. For the linear functions in problem 1 and 1 d, use the focus point to find $f(0)$ and the value of $a$ where $f(a) = 0$.
  4. For the linear functions in problem 2 and 2 d, use the focus point to find $f(0)$ and the value of $a$ where $f(a) = 0$.
  5. Suppose $f$ is a linear function with $f(1)= 3$ and $f(3) = 1$.
          a. Find the focus point of $f$ on a mapping diagram.
          b. Use the focus point to find $f(0)$.
          c. Determine $m$, the magnification factor of $f$.
          d. Give two point slope forms for $f$ based on the given information and the slope intercept form for $f$.
  6. For each  linear function  create a mapping diagram for the function treated as a composition of core linear functions.
    a. $f(x)=2x + 1$                        b. $f(x)= -2x - 3$       
    c. $f(x)=\frac 1 2 x + \frac 1 2$            d.  $f(x)=-\frac 1 2 x + \frac 1 2$
  7.  For each  linear function  use "socks and shoes" to find and create a mapping diagram for the function for its inverse linear function.
    a. $f(x)=2x + 1$                        b. $f(x)= -2x - 3$       
    c. $f(x)=\frac 1 2 x + \frac 1 2$            d.  $f(x)=-\frac 1 2 x + \frac 1 2$