cotangent: Project $P(t)$ from the point $(0,0) $ to the horizontal
line $y=1$ to the point $(m_c(t),1)$ (applying $pr_{(0,0), (y=1)}$ as
the projection function) to obtain $pr_{(0,0), (y=1)}(P(t)) = m_c(t) =\frac {x(t)}{y(t)}=
\cot(t)$.
Notes: The cotangent function is not defined when $y(t) =0$. Thus the
domain for the tangent function is $Dom_{cot}=\{ t \in \mathbb R : t \ne k\pi , k \in \mathbb Z\}$
For $t \in Dom_{cot}$, we have the identity, $cot(t)=\frac{cos(t)}{sin(t)}$.
Unit Circle Definition of Sine, Cosine, and Tangent: GeoGebra Mapping Diagrams