Definition: We say that a function $f$ has
even symmetry ("Y-axis reflective symmetry") for a
set D, if whenever $a \in D$ , $-a \in D$ and $f(-a) =
f(a)$.
We say that a function $f$ has odd symmetry
("origin symmetry") for a set D, if whenever $a \in D$ , $-a
\in D$ and $f(-a) = -f(a)$.
Graph
Mapping Diagram
$f$ has even
symmetry:
$f(-a) = f(a)$
$f$ has odd
symmetry:
$f(-a) = -f(a)$.
We say that a function $f$ has even symmetry
with respect to $x=h$ ("axis reflective symmetry") for a
set D, if whenever $x_a=h+a \in D$ , $x_{-a}=h-a \in D$
and $f(h-a) = f(h+a)$.
We say that a function $f$ has odd symmetry
with respect to the point $(h,k)$ for a set D, if
whenever $x_a=h+a \in D$ , $x_{-a}=h-a \in D$ and $f(h-a) -
k = -(f(h+a) - k)$.