Definition: We say that a number $c$ is a maximum value for $f$ on a set  D, if whenever $a \in D$ , $f(a) \le f(c)$.
We say that a number $c$ is a minimum value for $f$ on a set  D, if whenever $a \in D$ , $f(a) \ge f(c)$.
We say that a number $c$ is an extreme value for $f$ on a set  D, if $c$ is a maximum value for $f$ on a set  D or $c$ is a minimum value for $f$ on a set  D

Graph
Mapping Diagram
Maximum:
If $a \in D $ then $f(a) \le f(c)$.
If $a \in D $ then
              $f(a) \le f(c)$.
MD: If $a \in D $
              then $f(a) \le f(c)$.
Minimum:
If $a \in D $ then $f(a) \ge f(c)$.
If $a \in D $ then
              $f(a) \ge f(c)$.
MD:If $a \in D $
              then $f(a) \ge f(c)$.