Introduction to Sensible Calculus: A Thematic Approach

The Anja S. Greer Conference on Mathematics, Science and Technology June 22 - June 27, 2014 Martin Flashman

Professor of Mathematics Humboldt State University <u>flashman@humboldt.edu</u> http://users.humboldt.edu/flashman

Day by Day Outline (Rev'd 6-25)

- O. Sunday: Basic Themes Plus ...
 - Mapping Diagrams
 - Technology (Winplot and Geogebra)
- I. Monday: Making Sense of the Derivative.
- II. Tuesday: More on the Derivative

III.Wednesday: DE's, Approximation and The Fundamental Theorem of Calculus

IV. Thursday: More on DE's, Models and Estimations. Making Sense of Taylor Theory and the Calculus of Series.

V. Friday: Frontiers-Probability, Economics, ...

Daily Assignment Submit on paper or electronically.

- Create one exercise and one problem that incorporates (and/or extends) something from the session content.
- **Pose one question** related to the class content that you would like explained further. [I will respond privately unless you grant permission for a public response.]
- Take one (or two) topics discussed in the session and discuss how you can incorporate its content or technology into your teaching.
- Electronic submissions may be shared with the class through the course webpage with submitter's permission.
- OPTIONAL: Complete any worksheet or problems suggested during class.

Continuing from Last Class

Review GeoGebra Solution to Continuity Problem

Download: <u>Cont Prob 2 (ggb)</u>

Making Sense of the Calculus of Derivatives

- Finding derivatives from the definition can be tedious for more complicated elementary functions.
- The calculus is a systematic procedure for finding the derivatives of elementary functions.
- An elementary function is a function built from a list of core functions by applying addition, subtraction, multiplication, division, and composition to the core functions and their inverses.
- The Core Functions (Short list): $c, x^n, e^x, \sin(x)$
- (Others) x^r , b^x , $\ln(x)$, $\cos(x)$, $\tan(x)$, $\sec(x)$
- Rules: Linearity, Product, Quotient, Chain

Making Sense of a Differential Equation and the Fundamental Theorem of Calculus

• Example: The following differential equations of the form $\frac{dy}{dx} = P(x)$ have solutions that cannot be expressed as an elementary function.

$$-\frac{dy}{dx} = \sin(x^2)$$
$$-\frac{dy}{dx} = e^{-x^2}$$

• The solutions to these are given by using the FT of C:

$$y = f(t) = \int_0^t P(x) dx$$

The Fundamental Theorem of Calculus says:

When P(x) is continuous, then $\frac{dy}{dt} = P(t)$.

The Fundamental Theorem of Calculus Derivative Form

If f is continuous and $G(t) = \int_a^t f(x) dx$ then

G is a differentiable function and G'(t) = f(t). Interpretation:

f(x) is velocity of object at time x.

G(t) is the net change in position of object from time a to time t.

G'(t) = velocity of object at time t.

Making Sense of Calculus: Applications to Estimation

- Intermediate Value Theorem, Roots and Continuity.
 SC <u>I.I.2</u>. Intermediate Values
 - Bisection Algorithm
 - Graphical
 - Mapping Diagrams
 - Spreadsheets

Making Sense of Calculus: Applications to Estimation

- Linearity and Estimating Roots <u>III.A.2</u>
 - Linear Estimation Function:
 - Geometric Interpretation (Slope of Tangent line)
 - Motion Interpretation (Mapping Diagram, Magnification and Focus Point)
 - Solving for roots in linear functions.
 - Brief excursion into inverses for linear functions.
 - More mapping diagrams!
 - Newton's Method Algorithms. Estimation appications to error estimates.

Examples on Excel, Winplot, Geogebra

- Excel example(s):
 - Linear Mapping Diagram example
 - Newtons Method
- Winplot examples:
 - Linear Mapping Diagram-composition examples
 - Linear Graph Linked File-composition examples
- Geogebra examples:
 - IV Steps
 - <u>Secant Tangent</u>
 - Alternative Derivative for Sine.

Session III Differential Equations, Approximation and The Fundamental Theorem of Calculus

We continue to explore making calculus sensible by a consideration of the FT of Calculus from a view of DE's and estimations using Euler's Method interpreted in a variety of contexts.

Review: What's Happening Now in The First Calculus Course

•Differential Calculus: The derivative and applications- graphing, extremes, rates, Newton's method, mixing continuity and differentiability in theory, some slight mention of differential equations, THEN...

•Integral Calculus! Area, area, area, then Magic!

•The Fundamental Theorems of Calculus

What's Happening Now

Critique:

- Little motivation for integration from previous work despite
 - Local analysis of functions based on the derivative and MVT.
 - Estimation connected to
 - the derivative definition
 - linear approximating function (tangent line interpretation)
 - The differential
 - Introduction to Differential Equations available through implicit differentiation and related rates
 - Unclear: What are the fundamental mathematical questions for a model?

Sensible Calculus: Make Connections

•Related Rates and Implicit differentiation involve "differential equations"

•Work on graphing using the derivative involves making qualitative inferences about a function from information about its derivative.

•Applications of the Mean Value Theorem suggest uniqueness of solution to IVP.

•Estimates using the differential (linear estimator).

Sensible Calculus: Two Forms of the Fundamental Theorem of Calculus

Evaluation Form

If f is continuous and G'(x) = f(x) for all x then

$$\int_a^b f(x) \, dx = G(b) - G(a).$$

Derivative Form (Barrow's Theorem) If f is continuous and $G(t) = \int_a^t f(x) dx$ then

G is a differentiable function and G'(t) = f(t).

Fundamental Theorem of Calculus Evaluation Form

If f is continuous and G'(x) = f(x) for all x then $\int_a^b f(x) dx = G(b) - G(a)$.

Interpretation:

G(x) is a position function for a moving object which has its velocity at time x given by f(x).

 $\int_{a}^{b} f(x) dx$ represents the net change in position of the object from time a to time b.

The Fundamental Theorem of Calculus Derivative Form (Barrow's Theorem) If f is continuous and $G(t) = \int_a^t f(x) dx$ then G is a differentiable function and G'(t) = f(t). Interpretation: f(x) is velocity of object at time x. G(t) is the net change in position of object from time a to time t. G'(t) = velocity of object at time t.

The FT of Calculus, DE's, and Euler's Method

The motivation for the FT of C comes from estimating a solution to an Initial Value Problem: visual and numerical estimation with graphs and mapping diagrams.

Ch III.A.1. THE DIFFERENTIAL

<u>Ch IV Differential Equations from an</u> <u>Elementary Viewpoint</u>

V.A The Definite Integral - Connecting the definition to Euler's method and DE's.

Visualizing solutions to IVP's Initial Value Problem (IVP):

Given y' = f'(x) = P(x) or P(x, y) and f(a) = c, find exactly or estimate f(b).

Connect the differential equation to the geometric interpretation using direction (tangent) fields and integral curves. Visual estimate of solution. See <u>Sensible</u> <u>Calculus</u> on DE's.

Estimating solutions to IVP's Initial Value Problem (IVP):

Given y' = f'(x) = P(x) and f(a) = c,

find exactly or estimate f(b).

Connect to previous work on estimates using the differential (linear estimator).

Euler's method evolves from a progression of estimates for solving an initial value problem.

Euler's Method

•Euler's method evolves from a progression of estimates for solving an initial value problem:

Given y' = f'(x) = P(x) and f(a) = c, find exactly or estimate f(b).

- One Step: the differential.
- Two Equal Steps: the differential reset after first step.

-N Equal Steps: The differential reset after each step

Use of spread sheets to make the estimation systematic.

•Ease of estimation of net change when f'(x) depends only on x.

Euler's Method by Hand/Technology

- Using Spreadsheet
 Using Winplot
 and/or GeoGebra
 <u>diffeq.wp2</u>
 - Euler.xls
 - Euler (ggb)

Euler's Method II y' = P(x, y)

•Euler's method also works for solving an initial value problem:

Given y' = P(x, y) and f(a) = c, find exactly or estimate f(b).

- One Step: the differential.
- Two Equal Steps: the differential reset after first step using y' = P(x, y).

-N Equal Steps: The differential reset after each step

Use of spread sheets to make the estimation systematic.

Euler's Method III y'' = P(x, y, y')

•Euler's method also works for solving higher order initial value problems:

Given y'' = P(x, y, y') and f(a) = c, f'(a) = d, find exactly or estimate f(b).

- One Step: the differential.
- Two Equal Steps: the differential for y reset after first step using the differential for y'.

-N Equal Steps: The differential reset after each step

Use of spread sheets to make the estimation systematic.

Partner Problems One Problem per Partner pair. L.1 Assume y is a solution to the differential equation

 $\frac{dy}{dx} = \frac{1}{x^2 + 1}$ with y(0) = 2.

(a) Using just the given information, find any local extreme points for y and discuss the graph of y, including the issue of concavity. (b) Using the differential, estimate y(1) and y(-1).

L.2 Assume y is a solution to the differential equation

$$\frac{dy}{dx} = \frac{1}{x^2 + 1}$$

- (a) Sketch the tangent field showing tangents in all four quadrants.
- (b) Draw three integral curves on your sketch including one through the point (1, 2);
- (c) Suppose that a solution to the differential equation has value 2 at 1.
 - (i) Based on your graph, estimate the value of that solution at 2.
 - (ii) Estimate the value of y(3) using Euler's method with n = 4.
- L.3 Assume y is a solution to the differential equation

$$\frac{dy}{dx} = -\frac{y}{x}$$

- (a) Sketch the tangent field showing tangents in all four quadrants.
- (b) Draw three integral curves on your sketch including one through the point (1, 2);
- (c) Suppose that a solution to the differential equation has value 2 at 1.
 - (i) Based on your graph, estimate the value of that solution at 2.
 - (ii) Estimate the value of y(2) using Euler's method with n = 4.
- L.4 Suppose y'' = -y, y'(0) = 1 and y(0) = 0. Estimate y(1), y(2), y(3), and y(4).

The Sensible Calculus Program

The Definite Integral, DE's, and Euler's Method

The motivation for defining the definite integral comes from estimating a solution to an Initial Value Problem, visual and numerical estimation with graphs and mapping diagrams.

 $\underline{V.A}$ The Definite Integral - Connecting the definition to Euler's method and DE's.

The consequences of this approach-

The FT of C makes sense.

FT of Calculus Objective & Key Ideas

Two Objectives:

•Estimate Net Change in Distance from differential equation using Euler's method for a derivative function that depends only on x

•Measure the error in using Euler's method to estimate net change for monotonic functions.

FT of Calculus Objective & Key Ideas

Two Key Ideas:

When x is close to a, f(x) is approximately equal to a linear function, f(a) + f '(a)(x-a).

 As long as f is a sufficiently well behaved function there is some c between a and x where

•
$$f(x) = f(a) + f'(c)(x-a)$$
.

Conclusion

•With this reorganization, the treatment of the Fundamental Theorem of Calculus forms a sensible part of the first year calculus program, in a thematic approach to understanding the mathematical themes:

Differential Equations, Estimation, and Mathematical Modelina

Examples on Excel, Winplot, Geogebra

- Excel example(s):
 - Euler's Method
- Winplot examples:
 - <u>Linear Mapping Diagram-composition</u> <u>examples</u>
 - <u>Linear Graph Linked File-composition</u> <u>examples</u>
- Geogebra examples:
 - <u>Euler's Method with Mapping diagram &</u> <u>rectangles</u>

End of Session III

Questions for next session? Catch me between sessions or e-mail them to me: flashman@humboldt.edu

- [FL1] Flashman, Martin. "Differential Equations: A Motivating Theme for A Sensible Calculus," in "Calculus for All Users" The Report of A Conference on Calculus and Its Applications Held at the University of Texas, San Antonio, NSF Calculus Reform Conference, October 5 - 8, 1990.
- [UMAP] Flashman, Martin. "<u>A Sensible Calculus.</u>," The UMAP Journal, Vol. 11, No. 2, Summer, 1990, pp. 93-96.
- [FL2] Flashman, Martin. "Using Computers to Make Integration More Visual with Tangent Fields," appearing in Proceedings of the Second Annual Conference on Technology in Collegiate Mathematics, Teaching and Learning with Technology of November 2-4, 1989, edited by Demana, Waits, and Harvey, Addison-Wesley, 1991.
- [FL3] Flashman, Martin. "Concepts to Drive Technology," in Proceedings of the Fifth Annual Conference on Technology in Collegiate Mathematics, November 12-15, 1992, edited by Lewis Lum, Addison-Wesley, 1994.
- [FL4] Flashman, Martin. "Historical Motivation for a Calculus Course: Barrow's Theorem," in Vita Mathematica: Historical Research and Integration with Teaching, edited by Ronald Calinger, MAA Notes, No. 40, 1996.