Introduction to Sensible Calculus: A Thematic Approach

The Anja S. Greer Conference on Mathematics, Science and Technology June 22 - June 27, 2014 Martin Flashman

Professor of Mathematics Humboldt State University

flashman@humboldt.edu

http://users.humboldt.edu/flashman

Day by Day Outline

- O. Sunday: Basic Themes Plus ...
 - Mapping Diagrams
 - Technology (Winplot and Geogebra)

I. Monday: Making Sense of the Derivative.

- II. Tuesday: DE's, Approximation and The Fundamental Theorem of Calculus
- III. Wednesday: More on DE's, Models and Estimations
- IV. Thursday: Making Sense of Taylor Theory and the Calculus of Series
- V.Friday: Frontiers-Probability, Economics, ...

Daily Assignment Submit on paper or electronically.

- Create one exercise and one problem that incorporates (and/or extends) something from the session content.
- Pose one question related to the class content that you would like explained further. [I will respond privately unless you grant permission for a public response.]
- Take one (or two) topics discussed in the session and discuss how you can incorporate its content or technology into your teaching.
- Electronic submissions may be shared with the class through the course webpage with submitter's permission.
- OPTIONAL: Complete any worksheet or problems suggested during class.

Continuing from Last Class

Sensible Calculus and Mapping Diagram Resources

- Sensible Calculus Visualizations and Mapping Diagrams
- Mapping Diagrams from A(Igebra)
 B(asics) to C(alculus) and D(ifferential)
 E(quation)s.

A Reference and Resource Book on Function Visualizations Using Mapping Diagrams

Examples with Technology

LINK for Current Materials

- Excel examples [Covered last class]
- Winplot examples
- Geogebra examples
- SketchPad examples

Simple Examples are important!

f(x) = mx + b with a mapping diagram -

Five examples:

- Example 1: m = -2; b = 1: f(x) = -2x + 1
- Example 2: m = 2; b = 1: f(x) = 2x + 1
- Example 3: $m = \frac{1}{2}$; b = 1: $f(x) = \frac{1}{2}x + 1$
- Example 4: m = 0; b = 1: f(x) = 0 x + 1
- Example 5: m = 1; b = 1: f(x) = x + 1

Visualizing f(x) = mx + b with a mapping diagram -- Five examples

Example 1:
$$m = -2$$
; $b = 1$
 $f(x) = -2x + 1$

- Each arrow passes through a single point, which is labeled F = [-2, 1].
- The point F completely determines the function f.
 - given a point / number, x, on the source line,
 - \blacksquare there is a unique arrow passing through F
 - meeting the target line at a unique point / number, -2x + 1,

Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

Example 2:
$$m = 2$$
; $b = 1$
 $f(x) = 2x + 1$

- Each arrow passes through a single point, which is labeled F = [2,1].
- The point F completely determines the function f.
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through F
 - meeting the target line at a unique point / number, 2x + 1,

Visualizing f(x) = mx + b with a mapping figure -- Five examples:

Example 3:
$$m = \frac{1}{2}$$
; $b = 1$
 $f(x) = \frac{1}{2}x + 1$

- Each arrow passes through a single point, which is labeled $F = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$.
- The point \overline{F} completely determines the function f.
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through F
 - meeting the target line at a unique point / number, $\frac{1}{2}x + 1$,

Visualizing f(x) = mx + b with a mapping figure -- Five examples:

Example 4:
$$m = 0$$
; $b = 1$
 $f(x) = 0x + 1$

- Each arrow passes through a single point, which is labeled F = [0, 1].
- The point F completely determines the function f.
 - given a point / number, x, on the source line,
 - \blacksquare there is a unique arrow passing through F
 - meeting the target line at a unique point / number, 0x + 1,

Visualizing f(x) = mx + b with a mapping figure -- Five examples:

Example 5: m = 1; b = 1f(x) = 1x + 1

- Unlike the previous examples, in this case it is not a single point that determines the mapping figure, but the single arrow from 0 to 1, which we designate as F[1,1]
- It can also be shown that this single arrow completely determines the function. Thus, given a point / number, x, on the source line, there is a unique arrow passing through x parallel to F[1,1] meeting the target line a unique point / number, x+1, which corresponds to the linear function's value for the point/number, x.
 - The single arrow completely determines the function f.
 - given a point / number, x, on the source line,
 - there is a unique arrow through x parallel to F[1,1]
 - meeting the target line at a unique point / number, x + 1, which corresponds to the linear function's value for the point/number, x.

Motivation from Models
Balance in Interpretations
Exact vs. Estimated
Local Linearity
Unification/Generalization
Abstraction/Application (D. Solow)

Session I Making Sense of the Derivative.

Reconsideration of the linear function

$$y = f(x) = mx + b$$

Interpretation Model context	x	y = f(x)	m
Motion	(t) time	(s) position on a coordinate line	Velocity of object (Constant)
Coordinate Geometry	1 st coordinate of a point in the plane	2nd coordinate of a point in the plane	Slope of line
Economic Production	quantity of a product bought/sold	total cost/revenue/profit for product bought/sold	marginal cost/revenue /profit of product (Constant)
Probability Random Variable	range value of a given random variable	probability that the random variable will be less than or equal	probability density of random

- Ch O A Motivation: What is the calculus?
- Ch O B Solving the Tangent Problem

- a modelling context
- visual and numerical estimation
 - graphs
 - mapping diagrams.
- · Ch 1 A Tangent Line
- · Ch 1 B Velocity

• Ch O A Motivation: What is the calculus?

• Ch O A Motivation: What is the calculus?

- a modelling context
- visual and numerical estimation
 - graphs (Slope)
 - mapping diagrams (Magnification)

Ch O B Solving the Tangent Problem

- a modelling context
- visual and numerical estimation
 - graphs (Slope)

- a modelling context
- visual and numerical estimation
 - graphs (Slope)
- · Ch 1 A Tangent Line
 - Estimation
 - Four Steps
- · UNIFICATION /GENERALIZATION

- a modelling context
- visual and numerical estimation
 - mapping diagrams (Magnification)
- · Ch 1 B Velocity
 - Estimation
 - Four Steps
- · UNIFICATION /GENERALIZATION

- ABSTRACTION
- visual and numerical estimation
 - graphs (Slope)
 - mapping diagrams (Magnification)
- · Ch 1 D Derivative
 - Estimation
 - Four Steps

- a modelling context:
 Generalization/Abstraction/Application
- visual and numerical estimation
 - graphs (Slope)
 - mapping diagrams (Magnification)
- Ch 1 C Other Models/Interpretations for the Derivative
 - Probability: (Point) Probability Density
 - Economics: Marginal Cost/Revenue/Profits

Think about These Problems

M.1 Use a mapping figure for the function f(x) = -3x + 2 to illustrate that

$$f'(1) = -3.$$

Sketch a mapping figure that illustrates the work to show that the linear function f(x) = mx + b has f'(a) = m. Discuss how different values of m impact your figure.

M.2. Use a mapping figure for the function $f(x) = x^2$ to illustrate that

$$f'(3) = 6.$$

f'(3) = 6. Sketch a mapping figure that illustrates the work to show that f'(a) = 2a.

M.3 Use a mapping figure for the function $f(x) = \frac{1}{x}$ to illustrate that

$$f'(2) = -\frac{1}{4}$$

 $f'(2) = -\frac{1}{4}.$ Sketch a mapping figure that illustrates the work to show that $f'(a) = -\frac{1}{a^2}.$

Making Sense of Calculus: The Derivative of Core Functions

- The Exponential Function
 SC_I.F.2
- Motivate with Population Model:

$$P(t) = 2^t$$

- Find P'(0).
- Connect P'(t) = P'(0) P(t)
- Connect to Compound Interest Rate
- Interpretation and definition of e.
- If P'(x) = P(x) with P(0) = 1 then $P(x) = e^x$.

Making Sense of Calculus: The Derivative of Core Functions

• The Sine Function

*I.F.*3

• Motivate with Unit Circle Motion:

$$f(t) = \sin(t), g(t) = \cos(t)$$

- Estimate, then find f'(0), g'(0).
- Connect f'(t) = f'(t)g(0) + g'(t)f(0)

Making Sense of Calculus: The Derivative Calculus

- Product Rule SC II.A
- Motivate with Linearity in Algebra
 - Linear Estimation
- Connect to Rate Interpretation
 - Rectangular Area
 - Mapping Diagram of Sides
 - Error Estimation
- Continuity and Differentiability
 Connection

Making Sense of Calculus: The Derivative Calculus

- · Chain Rule SC II.B
- Motivate with Linearity in Algebra
 - Linear Estimation
- · Connect to Rate Interpretation
 - Gas consumption, Motion, Time
 - Mapping Diagram for Composition
 - Error Estimation
 - Pattern Recognition
 - Leibnitz Notation

Making Sense of Calculus: Applications to Estimation

- Local Linearity and the Differential <u>III.A.1</u>
 - Linear Estimation Function:
 - Geometric Interpretation (Slope of Tangent line)
 - Motion Interpretation (Mapping Diagram, Magnification and Focus Point)
 - Leibniz Notation and the Differential
 - Estimation applications to error estimates.

Making Sense of Calculus: Applications to Estimation

- Intermediate Value Theorem, Roots and Continuity.
 - SC I.I.2. Intermediate Values
 - Bisection Algorithm
 - · Graphical
 - · Mapping Diagrams
 - Spreadsheets

Making Sense of Calculus: Applications to Estimation

- Linearity and Estimating Roots <u>III.A.2</u>
 - Linear Estimation Function:
 - Geometric Interpretation (Slope of Tangent line)
 - Motion Interpretation (Mapping Diagram, Magnification and Focus Point)
 - Solving for roots in linear functions.
 - Brief excursion into inverses for linear functions.
 - More mapping diagrams!
 - Newton's Method Algorithms Estimation

Examples on Excel, Winplot, Geogebra

- Excel example(s):
 - Linear Mapping Diagram example
 - Newtons Method
- · Winplot examples:
 - Linear Mapping Diagram-composition examples
 - Linear Graph Linked File-composition examples
- Geogebra examples:
 - IV Steps
 - Secant Tangent
 - Alternative Derivative for Sine.

End of Session I

- Next session will deal further with inferential applications of the derivative as a transition to the study of differential equations, integration and the Fundamental Theorem of Calculus
- · Questions?

Thanks The End!

Questions for next session? Catch me between sessions or e-mail them to me:

flashman@humboldt.edu

- [FL1] Flashman, Martin. "Differential Equations: A Motivating Theme for A Sensible Calculus," in "Calculus for All Users" The Report of A Conference on Calculus and Its Applications Held at the University of Texas, San Antonio, NSF Calculus Reform Conference, October 5 8, 1990.
- [UMAP] Flashman, Martin. "A Sensible Calculus.," The UMAP Journal, Vol. 11, No. 2, Summer, 1990, pp. 93-96.
- [FL2] Flashman, Martin. "Using Computers to Make Integration More Visual with Tangent Fields," appearing in Proceedings of the Second Annual Conference on Technology in Collegiate Mathematics, Teaching and Learning with Technology of November 2-4, 1989, edited by Demana, Waits, and Harvey, Addison-Wesley, 1991.
- [FL3] Flashman, Martin. "Concepts to Drive Technology," in Proceedings of the Fifth Annual Conference on Technology in Collegiate Mathematics, November 12-15, 1992, edited by Lewis Lum, Addison-Wesley, 1994.
- [FL4] Flashman, Martin. "Historical Motivation for a Calculus Course: Barrow's Theorem," in Vita Mathematica: Historical Research and Integration with Teaching, edited by Ronald Calinger, MAA Notes, No. 40, 1996.
- [DS1] Solow, Daniel. <u>The Keys to Advanced Mathematics</u>: Recurrent Themes in Abstract Reasoning
- [DS2] Solow, Daniel. How to Read and Do Proofs: An Introduction to Mathematical Thought Processes, Wiley; 6 ed (July 29, 2013).