In general: the sum of the interior angles in a n sided polygon is
A regular polygon is a polygon where the sides are all of equal length and the angles are all congruent (or of equal measure).
    
| name of polygon | n | degrees of the interior measure of each angle | 360 degrees divided by # in Column 2 | 
| equilateral triangle | 3 | 60 | 360 / 3 = 120 | 
| square | 4 | 90 | 360/4= 90 | 
| regular pentagon | 5 | 3*180/5= 108 | 360/5= 72 | 
| regular hexagon | 6 | 4*180/6=120 | 360/6= 60 | 
| regular heptagon | 7 | 5*180/7 | 360/7 | 
| regular octagon | 8 | 6*180/8=135 | 360/8 = 45 | 
| regular dodecagon | 12 | 10*180/12=1800/12=150 | 360/12=30 | 
(180 - 360/n) + (180 - 360/k) + (180
 - 360/p) = 360  
     
     3*180 -360( 1/n+1/k+1/p)= 2*180 
     
1*180 = 360( 1/n+1/k+1/p)
   
     
   
    
   So, for example, n=3, k=4
 and p= 5 is not possible since 
    
             
  
| Number of polygons around a vertex | Equation for angle sum = 360 | Equivalent Arithmetic equation | Solutions to the arithmetic equations. | |||||||||||||||||||||||||||||||
| 3: n , k, p | 180 - 360/n+180 - 360/k+180 - 360/p = 360 | 1/n+1/k+1/p =1/2 | 
 | |||||||||||||||||||||||||||||||
| 4: n, k, p, z | 180 - 360/n+180 - 360/k+180 - 360/p 180 - 360/z = 360 | 1/n+1/k+1/p +1/z =2/2 =1 | 
 | |||||||||||||||||||||||||||||||
| 5: n, k, p, z, w | 180 - 360/n+180 - 360/k+180 - 360/p+180 - 360/z+180 - 360/w = 360 | 1/n+1/k+1/p +1/z+1/w =3/2 | 
 |