

Part I: Core Problems (Do these without using summary sheets)

1. (10 Points) Suppose $y = (5t^2 + \sin(t))^4$. Find $\frac{dy}{dt}$.

Solution: Use the chain rule- $y = (5t^2 + \sin(t))^4 = u^4$; $u = 5t^2 + \sin(t)$ So

Ans. $\frac{dy}{dt} = 4(5t^2 + \sin(t))^3 \cdot (10t + \cos(t))$

2. (10 Points) Use calculus to **find the maximum value** of $g(x) = 5x^3 - 15x + 1$ for x in the interval $[-2, 2]$.

Show all your work.

Solution: $g'(x) = 15x^2 - 15 = 15(x+1)(x-1)$.

So the critical numbers where $g'(x) = 0$ in the interval $[-2, 2]$ are $x = +1$ and $x = -1$.

x	$g(x)$
2	$5*8-15*2+1 = 11$
1	$5-15+1 = -9$
-1	$-5+15+1 = 11$
-2	$5*(-8)+15*2+1 = -9$

Ans. The maximum value for $g(x)$ for x in the interval $[-2, 2]$ is 11.

3. (10 Points) Suppose f is a function with $f'(x) = 6x + 3$ and $f(1) = 2$. Find $f(0)$.

Solution: $f(x) = 3x^2 + 3x + C$. $f(1) = 2 = 3 + 3 + C$ so $C = 2 - 6 = -4$.

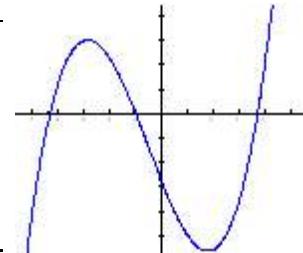
Thus $f(0) = -4$.

Ans. $f(0) = -4$.

4. (10 points) Suppose the graph of $y = P(x)$ is given below. Based on this graph, estimate the interval(s) where

a. $P'(x) < 0$: Estimate: $[-3, 2]$

b. $P''(x) > 0$: Estimate: $[-1, 4.3]$



Graph of $y = P(x)$

5. (10 points) For this problem suppose that P is a continuous function with $P(1) = 4$, $P(1.5) = -6$, $P(2) = 2$, and $P(2.5) = 8$.

Suppose that $G'(x) = P(x)$ for all x and $G(1) = 2$. Use Euler's method with $N = 4$ to estimate $G(3)$.

Solution: $dx = (3-1)/4 = 1/2$.

x	$G(x)$	$G'(x) = P(x)$	$dG = P(x) dx$
1	2	4	2
1.5	4	-6	-3
2	1	2	1
2.5	2	8	4
3	6		

Ans. $G(3) \approx 6$

6. (10 points)

a. Complete the following **DEFINITION** for the derivative:

The derivative of the function f at a , denoted $f'(a)$, is defined by

$$f'(a) = \left| \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h} \right| \text{ provided the limit exists.}$$

b. **USING THE DERIVATIVE DEFINITION**, find $f'(1)$ when $f(x) = 3x^2 + 5x$.

Solution:

$$\text{Step 1: } f(1+h) = 3(1+h)^2 + 5(1+h) = 3 + 6h + 3h^2 + 5 + 5h$$

$$\underline{-f(1) = 3 + 5}$$

$$\text{Step 2: } f(1+h) - f(1) = 11h + 3h^2$$

$$\text{Step 3: } \frac{f(1+h) - f(1)}{h} = \frac{11h + 3h^2}{h} = 11 + 3h$$

$$\text{Step 4: As } h \rightarrow 0, \frac{f(1+h) - f(1)}{h} = 11 + 3h \rightarrow 11, \text{ so } f'(1) = 11.$$

$$\text{Ans. } f'(1) = 11$$

7. (10 points) Complete the following as most appropriate:

a. **Definition:** The function f is continuous at $(x =) a$ if

(i) $f(a)$ exists; (ii) $\lim_{x \rightarrow a} f(x)$ exists; and (iii) $\lim_{x \rightarrow a} f(x) = f(a)$

b. **The Intermediate Value Theorem:**

If f is a continuous function on the interval $[a,b]$ and Z is a number between $f(a)$ and $f(b)$ then **there is a number p where $a < p < b$ and $f(p) = Z$** .

c. **The Mean Value Theorem:**

If f is a continuous function on the interval $[a,b]$ and also a differentiable function on the interval (a,b) then **there is a number p where $a < p < b$ and**

$$f'(p) = \boxed{\frac{f(b) - f(a)}{b - a}}$$

8. (20 points) Find the following derivatives as indicated:

a. $y = 3x^4 - \sqrt{x} - \frac{3}{x^4}$. Find dy/dx . Solution: $\frac{dy}{dx} = 12x^3 - \frac{1}{2\sqrt{x}} + \frac{12}{x^5}$

b. $f(x) = \frac{\cos(x)}{x^2 + 4}$. Find $f'(x)$.

Solution: $f'(x) = \frac{-(x^2 + 4)\sin(x) - 2x\cos(x)}{(x^2 + 4)^2}$

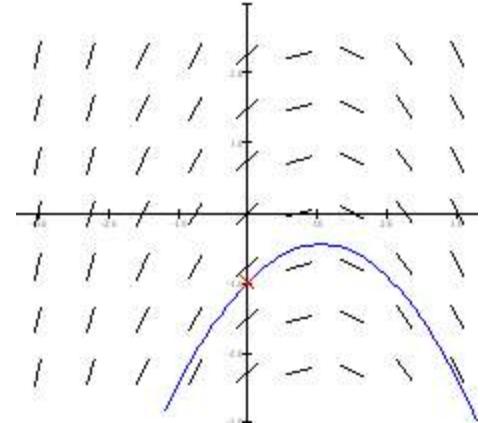
c. $Z = \sec(3+5t)$. Find dZ/dt . Solution: $dZ/dt = 5 \sec(3+5t) \tan(3+5t)$

d. $z = 3x \sin(y) - y e^x - x^2 \ln(y)$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Ans. $\frac{\partial z}{\partial x} = 3 \sin(y) - y e^x - 2x \ln(y)$; $\frac{\partial z}{\partial y} = 3x \cos(y) - e^x - \frac{x^2}{y}$

9. (10 points) Sketch the tangent (direction) field for $dy/dx = 1 - x$ in all quadrants with $-2 \leq x \leq 2$.

Draw an integral curve for this equation on your graph illustrating the graph of a solution to this differential equation passing through the point $(0, -1)$.



10. (20 points) Find the following **limits** (when possible): [Show your work!]

a. $\lim_{x \rightarrow \infty} \frac{4x^2 - 200x + 1000}{8x^2 + 200x - 1000} = \underline{1/2}$

Solution:

$$\lim_{x \rightarrow \infty} \frac{4x^2 - 200x + 1000}{8x^2 + 200x - 1000} = \lim_{x \rightarrow \infty} \frac{(4x^2 - 200x + 1000) \frac{1}{x^2}}{(8x^2 + 200x - 1000) \frac{1}{x^2}} = \lim_{x \rightarrow \infty} \frac{4 - \frac{200}{x} + \frac{1000}{x^2}}{8 + \frac{200}{x} - \frac{1000}{x^2}} = \frac{1}{2}$$

b. $\lim_{x \rightarrow 2^+} \frac{x^2 - 5x + 6}{x - 2} = \underline{-1}$

Solution: $\lim_{x \rightarrow 2^+} \frac{x^2 - 5x + 6}{x - 2} = \lim_{x \rightarrow 2^+} \frac{(x-3)(x-2)}{x-2} = \lim_{x \rightarrow 2^+} x - 3 = -1$

c. $\lim_{x \rightarrow 0} \frac{\sin(x) - x}{e^x - x - 1} = \underline{\hspace{2cm}}$

Solution: Use L'Hospital's Rule (0/0) twice: $\lim_{x \rightarrow 0} \frac{\sin(x) - x}{e^x - x - 1} = \lim_{x \rightarrow 0} \frac{\cos(x) - 1}{e^x - 1} = \lim_{x \rightarrow 0} \frac{-\sin(x)}{e^x} = 0$

d. Suppose $f(x) = \begin{cases} 3x & \text{when } x \leq -1 \\ x-3 & \text{when } -1 < x \leq 2 \\ x^2 - 3 & \text{when } x > 2 \end{cases}$

i) $\lim_{x \rightarrow -1^-} f(x) = \underline{-3}$

ii) $\lim_{x \rightarrow 2^+} f(x) = \underline{1}$

11. (10 points) Suppose a hollow spherical rubber ball has **a radius of 10 centimeters** and is only **.15 cm** thick. **Using the differential [or the linear estimating function], estimate the volume of rubber used to make the ball. You may leave your answer in terms of π .**

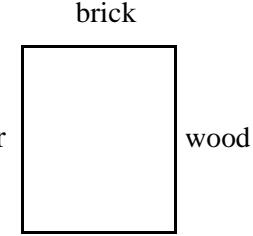
[The volume of a sphere of radius r is $\frac{4}{3}\pi r^3$.]

Solution: The volume of rubber used to make the ball is estimated by dV when $r = 10$ and $dr = .15$.

$$V = \frac{4}{3}\pi r^3 ; dV = 4\pi r^2 dr \text{ So } dV = 4\pi 100 (.15) = 60\pi$$

12. (10 points) A rectangular garden is to be constructed bounded on one side by a river bank, on two sides by a brick wall costing **\$20.00 per meter** and on the fourth side opposite the river by a wooden fence costing **\$10.00 per meter**. **There is a budget of \$400 for the project.**

a. Find the area of the garden if the total budget is spent and the wooden side is 5 meters long.



Solution: The wood costs $5*10 = \$50$, leaving $\$350$ for the 2 brick sides at $\$20$ per meter this gives 17.5 meters for the 2 sides so one side is 8.75 meter. The area is $5 * 8.75 = 43.75$ square meters.

a. Ans. The area is 43.75 square meters.

b. Use calculus to find the dimensions of the garden that will maximize the area of the garden subject to the budget constraint of spending \$400.

Solution: $A = b*w$, $10w + 20*2*b = 400$ so $b = 1/40 * (400 - 10w)$; so $A = 1/40(400w - 10w^2)$

$dA/dw = 1/40(400 - 20w) = 0$ when $w = 20$.

The dimensions of the garden walls that maximizes the enclosed area are **20 m for the wood and 5 meters = brick.**

13. (10 points) A spider is moving along the curve $Y = 4X^2 - X$ in the first quadrant of the plane so the spider's Y-coordinate is decreasing at a rate of -5 cm/sec at the point (x,y) .

a. Based on this statement **write an equation expressing the derivative of the spider's y-coordinate with respect to time, dy/dt , in terms of its x coordinate and the x coordinate derivative with respect to time, dx/dt .**

Solution: $dy/dt = (8x - 1)*dx/dt$. [The chain rule.]

b. How fast (**with respect to time**) is the spider's X - coordinate changing at the point $(1,3)$?

Solution: When $x = 1$ and $dy/dt = -5$, $dx/dt = -5/7$ cm / sec.

14. (20 points) Let $f(x) = 3x^3 - 9x + 2$.

a. Find the **critical point(s)** of f .

solution: $f'(x) = 9x^2 - 9$

$0 = 9(x+1)(x-1)$ so $x = -1$ or $+1$.

Ans. $x = 1, x = -1$

b. Find the interval(s) for which f is an **increasing** function.

Solution:

$f'(x) = 9x^2 - 9$; so $f'(0) = -9$; $f'(10) = 900 - 9$; $f'(-10) = 900 - 9$ so f is increasing for $(-\infty, -1)$ and $(1, \infty)$.

c. Find the interval(s) for which the graph of f is **concave up**.

Solution: $f''(x) = 18x$ so f is *concave up* for the interval $(0, \infty)$.

15. (10 points).

A space ship returning to earth from the planet YXO has an **acceleration at time t hours of $a(t)=100$ km/hr 2** .

After three hours, the velocity of the ship is 600 km/hour.

a. Find the **initial velocity** of the ship.

Solution: $v(t) = 100 t + C$. $v(3) = 300 + C = 600$ so $C = 300$.

$v(0) = C = 300$.

Ans. The initial velocity of the ship is 300 km/hour

b. Find the **distance** the ship traveled during the first hour.

$S(t) = 50 t^2 + 300 t$; $S(1) = 350$.

Ans. 350 km.

16. (10 points) Suppose $f(x) = e^{x/2}$.

a. Find the linear estimating polynomial $L(x)$ and the quadratic estimating polynomial $Q(x)$ for f centered at $x = 0$.

$$f'(x) = 1/2e^{x/2}; f''(x) = 1/4e^{x/2}$$

$$f'(0) = 1/2; f''(0) = 1/4$$

a) Ans. $L(x) = 1 + \frac{1}{2}x$; $Q(x) = 1 + \frac{1}{2}x + \frac{1}{4} * \frac{1}{2}x^2$

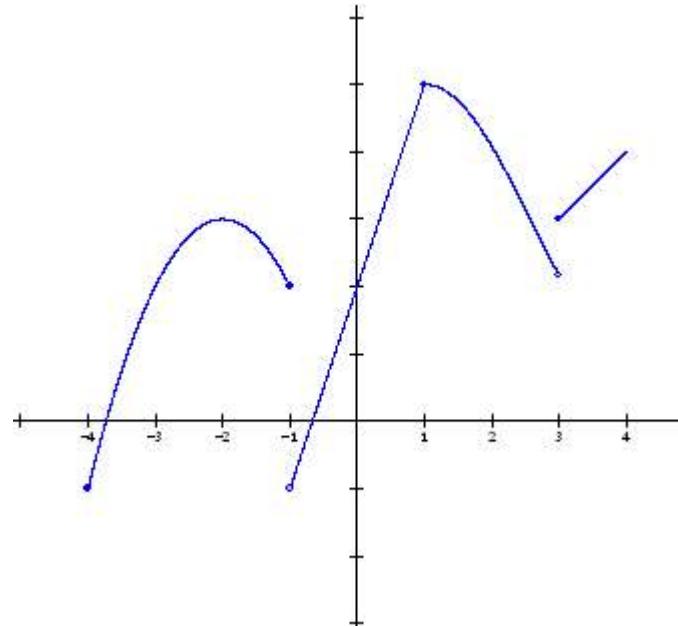
b. Use $Q(x)$ the quadratic polynomial found in part a) to estimate $f(1) = \sqrt{e}$.

*Solution: $f(1) = \sqrt{e} \approx Q(1) = 1 + \frac{1}{2} + \frac{1}{4} * \frac{1}{2} = 1 \frac{5}{8} = 1.625$*

b) Ans. $f(1) \approx 1.625$

17. (10 points) True or False. Circle the most appropriate response

For this problem assume that $P(x)$ is the function with the following graph:



Graph of $P(x)$

a. P is continuous at $x = 3$F.

d. P is differentiable at $x = 1$ F.

b. P is continuous at $x = 1$T.

e. If $1.5 < x < 2.5$ then $P'(x) \geq 0$ F.

c. P is differentiable at $x = 2$T.

f. $P''(-2) \geq 0$ F.