MATH 401 History of Mathematics
Fall, 2011
  Monday 5:30-6:50  BSS 308
Friday 9:00-9:40 BSS 211

Back to Martin Flashman's Home Page :)
Last updated: 9-19-11    The following description is still being developed and is subject to change.

Fall, 2011 COURSE INFORMATION (tentative)                                        Martin Flashman
MATH 401: History of Mathematics                                                                   TBA
OFFICE: BSS  356                                                                                                     PHONE:826-4950
Office hours :(Tentative) MT R 8:15-9:50; W 3:10-4:15  and by appointment or chance. 
E-MAIL:                                    WWW: http:/
Catalog Description: Historical developments of key mathematical ideas and milestones: from antiquity to evolution of the calculus. Research techniques introduced. Prerequisite: lower division calculus or IC.

TEXTS:  History of Mathematics: Brief Version by Victor Katz (Addison-Wesley Longman, Inc., 2004)
Classics of Mathematics, edited by Ron Calinger (Prentice Hall, 1995).

SCOPE: This course will cover some of the key developments in the history of mathematics up to the work of Newton and Leibniz and their contemporaries on calculus. In this we will consider various threads related to notation for numbers, algebra, geometry, and the nature and use of the infinite. Much of the content is relevant to the mathematics currently taught in high schools (though  current treatments are based on concepts developed by mathematicians who worked after the periods in history we will study).

Lectures will organize the topics to present materials not covered in the texts as well as those treated in the texts.  Supplementary readings and materials will be supplied as appropriate. Summaries of lectures may be available through the course webpage.

TECHNOLOGY: We may use the computer at various stages of this course to illustrate and investigate some of the mathematics from a more modern perspective. We will also be making use of materials found through the world wide web.

ASSIGNMENTS: Students will do readings from the text and original source materials.
Students will make presentations on assigned original sources and assigned problems both individually and with partners.
Occassionally I will make a presentation of a source or provide a lecture connecting sources and the text.

Reading Assignment: Each student will be expected to read a short article / note / or web page about the history of mathematics and make brief written summaries/reports of these to be passed on alternate Mondays, beginning date TBA. [These will be graded Honors(4)/Good(3)/Acceptable(2)/NCr(0). Be sure to include an appropriate citation.]

Weekly assignments will be due on a day TBA on the assignment page. (Accepted one day tardy at most!) Students will present solutions in class.

Cooperative Assignment: Teams will be formed to work cooperatively on making a presentation on a notation for numbers other than the current decimal system.

FINAL ASSESSMENT / TERM PAPER: Each student will be expected to write a history of mathematics (term) paper based on a "primary" source.
Guidelines and advice will be distributed separately.
Each student will be expected to make a short (no more10 minutes) presentation of the term paper during the time allotted for the final examnation in the university examination schedule.

GRADES:  Grades will be determined primarily **based on the points you receive from your participation in the various course activities.

Reading Assignment   50 points
Class Presenations (Problems/Sources)
100 points
Coop Assignment   50 points
Term paper and Presentation
150 points
TOTAL 350 points

** Active class participation will be considered in deciding individual grades after a general grade range has been assigned.
FINAL GRADES: Though final grades for the course are subject to my discretion, I will use the following overall percentages based on the total number of points for your work to determine the broader range of grades for the course.   
  85-100% ;   70- 84% ;  C  60- 69% ;  D  50- 59%  ;  F   0- 49%

   Relevant  Student learning outcomes for the BA Programs in Mathematics
Outcome 1: (Competence in Mathematical Techniques) Students demonstrate competence in the field of Mathematics, including the following skills:
1.3 The ability to read, evaluate, and create mathematical proof.
1.5 The ability to analyze the validity and efficacy of mathematical work.

Outcome 2: (Fundamental Understanding) Students demonstrate a fundamental understanding of the discipline of mathematics, including:
2.1 The historical development of the main mathematical and statistical areas in the undergraduate curriculum.
2.2 The ability to apply knowledge from one branch of mathematics to another and from mathematics to other disciplines.
2.3 The role and responsibilities of mathematicians and mathematical work in science, engineering, education, and broader society.

Outcome 3: (Communication) Students demonstrate fluency in mathematical language through communication of their mathematical work, including demonstrated competence in
3.1 Written presentations of pure and applied mathematical work that follows normal conventions for logic and syntax.
3.2 Oral presentations of pure and applied mathematical work which are technically correct and are engaging for the audience.

 Students with Disabilities: Persons who wish to request disability-related accommodations should contact the Student Disability Resource Center in House 71, 826-4678 (voice) or 826-5392 (TDD). Some accommodations may take up to several weeks to arrange.

Back to Martin Flashman's Home Page :)