

1. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ so $g \circ f: A \rightarrow C$. Prove the following:
 - a. If f and g are onto (surjective) then $g \circ f$ is onto.
 - b. If f and g are 1:1 (injective) then $g \circ f$ is 1:1.
 - c. If f and g are bijective then $g \circ f$ is bijective.
2. Suppose $f: A \rightarrow B$. Prove the following:
 - a. If $X \subseteq A$ then $f^{-1}(f(X)) \subseteq X$. Give an example where $f^{-1}(f(X)) \neq X$.
 - b. If $Y \subseteq B$ then $f(f^{-1}(Y)) \subseteq Y$. Give an example where $f(f^{-1}(Y)) \neq Y$.
 - c. If b and c are elements of B with $b \neq c$ then $f^{-1}(\{a\}) \cap f^{-1}(\{b\}) = \emptyset$
3. Suppose $f: A \rightarrow B$ and $g: B \rightarrow A$. Prove the following:
 - a. If $g \circ f = id_A$ then f is 1:1 (injective).
 - b. If $f \circ g = id_B$ then f is onto (surjective).
4. Suppose $f: A \rightarrow B$ and there is a function $g: B \rightarrow A$ so that
 - i) $f \circ g = id_B$ and
 - ii) $g \circ f = id_A$.Prove that the function g is unique with respect to functions satisfying properties i) and ii).
5. Suppose σ is a permutation of the set $\{1,2,3,4,5\}$ and for each n , $\sigma \circ \sigma(n) = n$.
Prove that for some n , $\sigma(n) = n$. [Hint: Use an indirect proof.]
Bonus: Generalize this problem and prove your generalization.