Martin Flashman's Courses
Math 106 Calculus for Business and Economics
Fall, 2006
Sec. 1 MWF   9:00 - 10:20
Sec. 2 MWF 10:30 - 11:50
Final Exam Schedule
Checklist of topics for Final Exam
Items marked $$ are important for students beginning the course.

Back to Martin Flashman's Home Page :)

Fall, 2006                COURSE INFORMATION               M.FLASHMAN
MATH 106 : Calculus for Business and Economics               Sec 1: MWF    9:00 - 10:20   
                                                                                            Sec. 2: MWF  10:30- 11:50
OFFICE: Library 1                                       PHONE:826-4950
Office Hours (Tent.)-  AND BY APPOINTMENT or chance!           WWW:
***Prerequisite: HSU MATH 42 or 44 or 45 or math code 40.

Math 106 CHECKLIST FOR REVIEWING FOR THE FINAL     M. Flashman                    * indicates a "core" topic.
         I.  Differential Calculus:

           A. *Definition of the Derivative
                Limits / Notation
                Use to find the derivative
                Interpretation ( slope/ velocity/marginal *** )

           B. The Calculus of Derivatives
               * Sums, constants, x n, polynomials
                *Product, Quotient, and  Chain rules 
                *logarithmic and exponential functions
                Implicit differentiation
                Higher order derivatives

           C. Applications of derivatives
                 *Tangent lines
                 *Velocity, acceleration, marginal rates (related rates) 
                 *Max/min problems
                 *Graphing: * increasing/ decreasing 
                           concavity / inflection
                           *Extrema  (local/ global) 
                The differential and linear approximation 

           D. Theory
                *Continuity  (definition and implications)
                *Extreme Value Theorem 
                *Intermediate Value Theorem 

      E. Several Variable Functions
                  Partial derivatives. first order

II. Differential Equations and Integral Calculus:

           A. Indefinite Integrals (Antiderivatives)
                *Definitions and basic theorem about constants.
                *Simple properties [ sums, constants, polynomials]
        *Simple differential equations with applications

             B. The Definite Integral
                 Definition/ Estimates/ Simple Properties / Substitution
                *Interpretations  (area / change in position/ Net cost-revenues-profit)
                                                 evaluation form
                Infinite integrals 

           C. Applications
                *Recognizing sums as the definite integral 
        *Areas (between curves). 
               Average value of a function. 


Back to Martin Flashman's Home Page :)