Martin Flashman's Courses
Math 104 Finite Mathematics  Fall, '02
Draft 8-8-02 (Work in progress!)
MWF 10:00- 10:50 SH 120





Back to Martin Flashman's Home Page :)
Last updated: 08/8/2002
 
 
Assignments and recommended problems
Fall 2002
Read Section  Do Problems 
(*= interesting but optional)
1.1 Functions - numeric/symbolic 1 3 5-7 13 15 21 25 26
1.2 Functions - Graphs 1 3 5 14-16 29
1.3 Linear Functions 1-25 odd 29-41 odd 45 47-53 odd 57 62-65
1.4 Linear Models 1-9 odd 11 23 25 31 32 35
2.1 Linear Systems (i) 1-7 odd 14 25
(ii)37 40 45
2.2 Matrices  1 2 3
5 7 8 9
    15-21 odd 29 33 39
2.3 Applications  1 3 8
17 25 *(29-31) 35 *(37 39 41)
3.1 Matrix Operations I 1-33 odd
37, 39
3.2 Matrix Product (i)1-5 9-21 odd 23
(ii)24 31 33 41(a-c) 47-49 51 55
(iii)57-59 61 65 66
3.3 Matrix Inverse (i)1-4
(ii) 7-21 odd 43 44 47 51 *63
(Changed)
encryption (iii)53 57 59
deteminant of a 2x2 matrix (iv)27-30
3.4  input-output 1-3
5-9 odd 17 23
4.1 inequalities 1-15 odd 20 22 23
24 25 33 35 39
4.2 graphical solution to LP 1-3
5-13 odd 21 27 31 35
4.3 The Simplex Method
1-3 5 7-9 21
13 23 25 31
6.1 Sets 1-13 odd  17 18  21  23
29 31-33 39-41 47 51 59
6.2 Counting (i)1-4 21-23 29 31
(ii)9-11 13 53
6.3 Add and multiply  1-7 odd  11 13 15-21 odd, 31 35 51
6.4 Permutations  1-7 odd 17 18 21-24
and Combinations 11-13 19 45 46 48 51 52
7.1 Sample spaces and events 1-13 odd 23-25 69 71
37-39 57-60 63-65 71 72
7.2 Estimated Probability 1-10 25,26 33
7.3 Theoretical/Empirical Probability 1-10 odd 23 24
35-42 31 *47(optional) 53
7.4 Probability and counting 1-10 odd 11-13 17 19
7.5 Abstract Probability
1-16 odd 25 26 3 38 41
7.6 Conditional Probability 1-15 odd 33 35-39 57 59
49 50 54 55
Independence 17-21 57
9.1 Markov Models
1-5 11-15 23 24 27 31
9.2
1-5 odd 11-17 odd 23 25 27
9.3 1-3
5-7 odd 13 23 27
G.1. 1-4 9 13
G.2 1-4 15
G.3 1 3 5
Tentative Schedule of Topics  (Subject to change) 8-8-02
 
Monday Wednesday
Friday 
Week 1 8-26 Course Introduction
What is a matrix?
8-28 Breath 8-30  1.1, 1.3 Review of Numbers, Variables, Graphs and Lines:
functions and models
Week 2 9-2 Labor Day
No Classs
9-4 1.4 Revenue/Cost/Break even
Demand/Supply/Equilibrium
Time rates: growth/velocity
9/6  2.1.Linear Equations. Solutions and applications. I
Week 3 9/9 2.2. Linear Equations: II.More on Solutions. Matrices. {geometry & 3 variables) 9/11 2.3 Linear Equations: III. More general systems and matrices.  9/13 2.4. Linear Equations: IV. 
Week 4 9/16 More applications.  9/18 Aplications. Begin Matrix Algebra: Add, Scalar multiplication, Transpose. 9/20 3.1 More Matrix algebra (Product)
Week 5 9/23 3.2 More Matrix algebra for products:
Matrices and linear equations revisited.
9/25  3.3 Matrix inverses. 9/27   3.3 Finish matrix equations. 
3.4.Start Input-output model.
Week 6 9/30 More Input output 10/2  4.1, 4.2 Linear Programming I: graphical. 
Start Simplex Method)/ LP
10/4 4.2 More Linear Programming: Start Simplex method
Week 7 10/7 4.3 More LP examples.Review. The Simplex Method.
10/9 Standard LP with Simplex Method. 4.3 Breath
10/11 More Simplex Method. Some Non-standard LP issues
Week 8 10/15 More on regular Markov systems.9.3Game Theory Intro G.1 More on regular Markov systems.9.3Game Theory Intro G.1 0/15 10/16 Exam I (covers thru 4.3) 10/18 Start Finite Sets and Counting. 6.1 & 6.2? 
Week 9 10/21 Finite Sets and Counting. 6.1 & 6.2? .  10/23 6.3 TREES.Multiplication 
 6.1 6.3 
10/25 More counting.permutations. More counting. 6.4
Week 10 10/28 More Counting . Permutations 10/30 Counting again.Begin Sample Space/events.
Begin Estimated Probability. 7.2 (Relative frequency and connection to probability distribution and sample size)
11/1 Empirical prob.7.3 Prob And counting 7.4 Some Abstractions 
Week 11 11/ 4 Empirical prob.7.3 Prob And counting 
-
11/6 7.5 Some Abstractions  11/8 Conditional Probability 
Multiplication and trees 7.6
Week 12 11/11 Independence.7.6 11/13 Breath  11/15 Exam II Covers TBA
chapters 6 and 7but (not independence)
Week 13 11/18 Markov Systems and matrices. 9.1, 9.2
[The birthday/birth month problem]
Review 
11/20 More on Markov Matrices 11/22 Regular Markov Systems.Equilibrium & Steady States. 9.3
BREAK 11/25  No class 11/27 No Class 11/29 No Class
Week 14 12/2 More on regular Markov systems.9.3 Game Theory Intro G.1  12/4 Saddle points and Mixed strategies. G.2-G.3Breath 12/6 More Games and optimal mixed strategies.
Topics TBA 
(More Prob or logic)
Week 15 12/9  Topics TBA
(More Prob or logic)
12/11 Topics TBA(More Prob or logic) 12/13 Breath & Review for Final
Back to Martin Flashman's Home Page :) Back to HSU Math. Department :}


Fall, 2002                                   COURSE INFORMATION  (Tentative)        M.FLASHMAN
MATH 104   Finite Mathematics                                          MWF10:00-10:50    SH 120
OFFICE: Library 48                                                                                     PHONE:826-4950
Hours (Tent.):  TBA  AND BY APPOINTMENT or chance!

E-Mail: flashman@axe.humboldt.edu         WWW: http://www.humboldt.edu/~mef2/
***Prerequisite: HSU MATH 42 or 44 or 45 or math code 40.



Back to Martin Flashman's Home Page :)

Back to HSU Math. Department :}