Martin Flashman's Courses
Math 104 Finite Mathematics  Fall, '01
MWF 11:00- 11:50 FH 177
Problems For Final Examination Part I: DUE by December 20
Page 226 #34; Page 519 #44
Final Examination Self- Schedule... Click Here!


Back to Martin Flashman's Home Page :)
Last updated: 09/10/2001
 
Assignments and recommended problems
Fall 2001
Read Section  Date Due Do Problems 
(*= interesting but optional)
1.1 Read for 9-5 Functions - numeric/symbolic 1 3 5-7 13 15 21 25 26
1.2 Not assigned Functions - Graphs 1 3 5 14-16 29
1.3 8-31&9-5 Linear Functions 1-25 odd 29-41 odd 45 47-53 odd 57 62-65
1.4 9-7 Linear Models 1-9 odd 11 23 25 31 32 35
2.1 9-10(i) Linear Systems (i) 1-7 odd 14 25
9-12(ii) (ii)37 40 45
2.2 9-14 Matrices  1 2 3
9-17 5 7 8 9
  9-17   15-21 odd 29 33 39
2.3 9-19 Applications  1 3 8
9-21 17 25 *(29-31) 35 *(37 39 41)
3.1 9-21(i) Matrix Operations I 1-33 odd
9-24(ii) 37, 39
3.2 9-24(i) Matrix Product (i)1-5 9-21 odd 23
9-26(ii) (ii)24 31 33 41(a-c) 47-49 51 55
9-28(iii) (iii)57-59 61 65 66
3.3 9-26(i) Matrix Inverse (i)1-4
9-28 (ii) (ii) 7-21 odd 43 44 47 51 *63
(Changed)
10/1 (iii) encryption (iii)53 57 59
10/3 (iv) deteminant of a 2x2 matrix (iv)27-30
3.4  10/1 input-output 1-3
10/3 5-9 odd 17 23
4.1 10/5 inequalities 1-15 odd 20 22 23
10/8 24 25 33 35 39
4.2 10/8 graphical solution to LP 1-3
10/8 5-13 odd 21 27 31 35
4.3 10/10 read only The Simplex Method
10/12 ..10/15 1-3 5 7-9 21
10/15 13 23 25 31
6.1 10/18 (i) 10/24 Sets 1-13 odd  17 18  21  23
10/26 29 31-33 39-41 47 51 59
6.2 10/18 Read only
10/20 (i)10/24
Counting (i)1-4 21-23 29 31
10/26 (ii)9-11 13 53
6.3 10/26 read only
10/29 DO!
Add and multiply  1-7 odd  11 13 15-21 odd, 31 35 51
6.4 10/31 Permutations  1-7 odd 17 18 21-24
11/2 and Combinations 11-13 19 45 46 48 51 52
7.1 11/2 Sample spaces and events 1-13 odd 23-25 69 71
11/5 37-39 57-60 63-65 71 72
7.2 11/5 Estimated Probability 1-10 25,26 33
7.3 11/5 Theoretical/Empirical Probability 1-10 odd 23 24
11/7 35-42 31 *47(optional) 53
7.4 11/7 Probability and counting 1-10 odd 11-13 17 19
7.5 11/7 READ ONLY Abstract Probability
11/9 1-16 odd 25 26 3 38 41
7.6 11/12 Conditional Probability 1-15 odd 33 35-39 57 59
11/14 49 50 54 55
11/28 Independence 17-21 57
9.1 11/28 Read Markov Models
11/30 1-5 11-15 23 24 27 31
9.2 11/30 Read
12/3 1-5 odd 11-17 odd 23 25 27
9.3 12/5 1-3
12/5 5-7 odd 13 23 27
G.1. 12/12 1-4 9 13
G.2 12/12 1-4 15
G.3 12/12 1 3 5
(NOT YET REVISED FROM OLD BOOK)
Assignments and recommended problems III
BREAK: p 237: 51, 52; p 273: 33, 34
Assignments and recommended problems IV
7.1  
7.2  
7.3  1-9 odd, 17, 23
7.4  1-9 odd, 17, 35, 38
7.5  1-7 odd, 11,13,,21,31,33,57,61
Assignments and recommended problems V
9.1  1-19 odd, 23-26
9.2  1-5, 9,23
     2,4, 29
9.3  3,5, 23
G.1  1-9 odd, 17
G.2  1-5,11
G.3  (i) 1-9 odd
     (ii) 9, 11, 13, 19
Tentative Schedule of Topics  (Subject to change) 5-24-01
 
Monday Wednesday
Friday 
Week 1 8/27 Course Introduction
What is a matrix?
Breath 8/31 1.1, 1.3 Review of Numbers, Variables, Graphs and Lines:
functions and models
Week 2 9/3 Labor Day
No Classs
9/5 1.4 Revenue/Cost/Break even
Demand/Supply/Equilibrium
Time rates: growth/velocity
9/7  2.1.Linear Equations. Solutions and applications. I
Week 3 9/10 2.2. Linear Equations: II.More on Solutions. Matrices. {geometry & 3 variables) 9/12 2.3 Linear Equations: III. More general systems and matrices.  9/14 2.4. Linear Equations: IV. 
Week 4 9/17 More applications.  9/19 Aplications. Begin Matrix Algebra: Add, Scalar multiplication, Transpose. 9/21 3.1 More Matrix algebra (Product)
Week 5 9/24 3.2 More Matrix algebra for products:
Matrices and linear equations revisited.
9/26  3.3 Matrix inverses. 9/28   3.3 Finish matrix equations. 
3.4.Start Input-output model.
Week 6 10/1 More Input output 10/3  4.1, 4.2 Linear Programming I: graphical. 
Start Simplex Method)/ LP
10/5 4.2 More Linear Programming: Start Simplex method
Week 7 10/8 4.3 More LP examples.Review. The Simplex Method.
10/10 Standard LP with Simplex Method. 4.3 Breath
 10/12 More Simplex Method. Some Non-standard LP issues?
Week 8 1More on regular Markov systems.9.3Game Theory Intro G.1 More on regular Markov systems.9.3Game Theory Intro G.1 0/15 10/17 Exam I (covers thru 4.3)  10/19 Start Finite Sets and Counting. 6.1 & 6.2? 
Week 9 10/22 Finite Sets and Counting. 6.1 & 6.2? .  10/24 6.3 TREES.Multiplication 
 6.1 6.3 
10/26 More counting.permutations. More counting. 6.4
Week 10 10/29 More Counting . Permutations 10/31 Counting again.Begin Sample Space/events.
Begin Estimated Probability. 7.2 (Relative frequency and connection to probability distribution and sample size)
11/2 Empirical prob.7.3 Prob And counting 7.4 Some Abstractions 
Week 11 11/ 5Empirical prob.7.3 Prob And counting 
-
11/7 7.5 Some Abstractions  11/9 Conditional Probability 
Multiplication and trees 7.6
Week 12 11/12 Independence.7.6 Breath  Exam II Covers 10/22 to  11/9
chapters 6 and 7but (not independence)
BREAK 11/19 No class No class No Class
Week 13 11/26Markov Systems and matrices. 9.1, 9.2
[The birthday/birth month problem]
Review 
11/28 More on Markov Matrices Regular Markov Systems.Equilibrium & Steady States. 9.3
Week 14 12/3More on regular Markov systems.9.3 Game Theory Intro G.1  Saddle points and Mixed strategies. G.2-G.3Breath  More Games and optimal mixed strategies.
Topics TBA 
(More Prob or logic)
Week 15 12/10 Topics TBA
(More Prob or logic)
Topics TBA(More Prob or logic) Breath & Review for Final
Back to Martin Flashman's Home Page :) Back to HSU Math. Department :}


Fall, 2001                                   COURSE INFORMATION  (Tentative)        M.FLASHMAN
MATH 104   Finite Mathematics                                          MWF11:00-11:50    GIST Hall 177
OFFICE: Library 48                                                                                     PHONE:826-4950
Hours (Tent.):  MWF 9:30-10:30  AND BY APPOINTMENT or chance!

E-Mail: flashman@axe.humboldt.edu         WWW: http://www.humboldt.edu/~mef2/
***Prerequisite: HSU MATH 42 or 44 or 45 or math code 40.



Back to Martin Flashman's Home Page :)

Back to HSU Math. Department :}