Thursday,  March 25
          
More on  the fourth dimension:
A progression: Point and segment on a line, line segment and square in
a plane (2-dim), square and a cube in space (3-dim), cube and a
"hypercube" in hyperspace (4-dim)
The  Hypercube 
and coordinates:
  What do we measure?  How does this determine "dimension?" 
  For a Line segment we can use one number to indicate distance and direction
from a single point:  0 .... 1
 For a Square we use two "coordinates" and we can identify the vertices of
the square: (0,0), (1,0), (0,1),(1,1)
 
 For a Cube  we 
use three "coordinates" and we can identify the vertices of the cube with
qualities such as "left..right", "up... down", and "front ... back":
  (0,0,0) , 
(1,0,0), (0,1,0),(1,1,0)
  (0,0,1), 
(1,0,1), (0,1,1), 
(1,1,1)
 
 For a Hypercube....we
use four "coordinates" and we can identify the vertices of the hypercube
with qualities such
as "left..right", "up... down", and "front ... back" and "inside... outside":
(0,0,0,0) 
, (1,0,0,0), (0,1,0,0),(1,1,0,0)
   (0,0,1,0), 
(1,0,1,0), (0,1,1,0), 
(1,1,1,0)
(0,0,0,1) , 
(1,0,0,1), (0,1,0,1),(1,1,0,1)
   (0,0,1,1), 
(1,0,1,1), (0,1,1,1), 
(1,1,1,1)
 
  
Another four dimensional object:
The hyper simplex!
point
line segment
triangle
tetrahedron ("simplex")
Cards and the fourth dimension.
(clubs,diamonds,hearts,spades)
                     
      (1,1,1,1)        (0,0,0,0)
     
                      
(1,1,0,1)        (0,0,1,0)
             
               (0,1,0,1)    
   (1,0,1,0)
             
               (0,0,0,1)    
   (1,1,1,0)
              
               (0,0,0,0)    
   (1,1,1,1)
 
Hamiltonian Tour:  move through each vertex once and only once.
 
13 cards "bridge hand"  : (5,3,0,5)   (4,2,6,1)
Other ways to think about the hypercube:
video
Other ways to use coordinates: 
Maps 
Coordinates for "earth" - the sphere
Coordinates for the torus!
  
The Tower of Hanoi
 (clubs,diamonds,hearts,spades)
                       
      (1,1,1,1)        (0,0,0,0)
        
                     
(1,1,0,1)        (0,0,1,0)
                
               (0,1,0,1)     
   (1,0,1,0)
                
               (0,0,0,1)     
   (1,1,1,0)
              
                 (0,0,0,0)  
     (1,1,1,1)
   
 Hamiltonian Tour:  move through each vertex once and only once.
  
  13 cards   : (5,3,0,5)   (4,2,6,1)
 
 Other ways to think about the hypercube:
 video
 
 Other ways to use coordinates: 
 The Tower of Hanoi
 
 The general problem: (illustrated with three objects)
 Move objects that have an order (size) from one place to another using only
a third place for "storage". No larger object can be placed on top of a smaller
object during the move. Move only one object at a time!
 
     Solution of the 3 Tower of Hanoi Puzzle.
 (Using playing cards 1,2,3)
 
 Card- Post    Changes to cards   0-1 Changes to
cards
                   
     (0, 0, 0)           
(0, 0, 0)    
  
 1.  1  →    B    (1, 0, 0)   
        (1, 0, 0)    
 2.  2  →    C    (1, 1, 0)   
        (1, 1, 0)    
 3.  1  →    C    (2, 1, 0)   
        (0, 1, 0)    
 4.  3  →    B    (2, 1, 1)   
        (0, 1, 1)    
 5.  1  →    A    (3, 1, 1)   
        (1, 1, 1)    
 6.  2  →    B    (3, 2, 1)   
        (1, 0, 1)    
 7.  1  →    B    (4, 2, 1)   
        (0, 0, 1)    
 
 Record your moves. Assume that 1 represents the ace and the posts are labelled
A, B and C.
 [Use the seven moves below from the 3 tower puzzle as a start.] Record also
the coordinates in 4 dimensional space for the number of changes made to
the 4 cards and the 0-1 switches.
 
 Solution of the 4 Tower of Hanoi Puzzle.
 
   Card→Post        Changes to cards   
0-1 Switches to cards
                        
(0, 0, 0, 0)            (0,
0, 0, 0)    
 1.  1 → B        (1, 0, 0, 0)   
        (1, 0, 0, 0)    
 2.  2 → C        (1, 1, 0, 0)   
        (1, 1, 0, 0)    
 3.  1 → C        (2, 1, 0, 0)   
        (0, 1, 0, 0)    
 4.  3 → B        (2, 1, 1, 0)   
        (0, 1, 1, 0)    
 5.  1 → A        (3, 1, 1, 0)   
        (1, 1, 1, 0)       
    
 6.  2 → B        (3, 2, 1, 0)   
        (1, 0, 1, 0)    
 7.  1 → B        (4, 2, 1, 0)   
        (0, 0, 1, 0)    
 8.
 9.
 10
 11.
 12.
 13.
 14.
 15.
 
 This finds a Hamiltonian tour on the hypercube!
 
 Four puzzle Competition: elimination tournament? Prize?
 
 2. Discuss how you would solve the 5-tower puzzle. 
 Move 4, then 1, then 4... so 
 
 How many moves would it take to solve the 5-tower puzzle?
15 + 1 + 15 =31 moves.
A 5 dimensional hypercube would use coordinates
( a,b,c,d,e) with a,b,c,d, or e either 0 or 1.... giving 2*2*2*2*2 = 32 vertices.
 How many moves would it take to solve the 6-tower puzzle?
 
 31 + 31 +1= 63
 
 Based on the actual time it takes you now to do the 4-tower, how long do
you think it would take you to do the 8-tower puzzle? Discuss the reasoning
for your estimate briefly.
we used 10 seconds for 15 moves ( our fastest player's time!)
 2 *2 *2* 2* 2* 2* 2* 2 -1=255  moves
             
 255 *10/ 15 = about 170 second  = about 3minute
 More on the 
Hypercube
 and higher dimensions:
  For a Hypercube....we 
use four "coordinates" and we can identify the vertices of the hypercube with
qualities such as "left..right", "up... down", and "front ... back" and "inside...
outside": (0,0,0,0)  ,
(1,0,0,0), (0,1,0,0),(1,1,0,0)
    (0,0,1,0),
 (1,0,1,0), (0,1,1,0),
 (1,1,1,0)
 (0,0,0,1) ,
 (1,0,0,1), (0,1,0,1),(1,1,0,1)
    (0,0,1,1),
 (1,0,1,1), (0,1,1,1),
 (1,1,1,1)
 
 Note: Dali use of the hypercube unfolded. 
 [connection w/ Banchoff}
      
 What about a 5 dimensional cube?
 
 Another five dimensional object:
 The  5 dimensional hyper simplex! 
   point
 line segment
 triangle
 tetrahedron ("simplex")
 4 dimensional hypersimplex
 
 
 
 Maps 
 Coordinates for "earth" - the sphere
 Coordinates for the torus!
 Activity for maps on Torus.
Locate P and Q on the map! give their coordinates.