Thursday,  March 25

More on  the fourth dimension:

A progression: Point and segment on a line, line segment and square in a plane (2-dim), square and a cube in space (3-dim), cube and a "hypercube" in hyperspace (4-dim)

The 
Hypercube and coordinates:
What do we measure?  How does this determine "dimension?"
For a Line segment we can use one number to indicate distance and direction from a single point:  0 .... 1

For a Square we use two "coordinates" and we can identify the vertices of the square: (0,0), (1,0), (0,1),(1,1)

For a Cube 
we use three "coordinates" and we can identify the vertices of the cube with qualities such as "left..right", "up... down", and "front ... back":
(0,0,0) , (1,0,0), (0,1,0),(1,1,0)
 
(0,0,1), (1,0,1), (0,1,1), (1,1,1)

For a Hypercube
....
we use four "coordinates" and we can identify the vertices of the hypercube with qualities such as "left..right", "up... down", and "front ... back" and "inside... outside": (0,0,0,0) , (1,0,0,0), (0,1,0,0),(1,1,0,0)
 
(0,0,1,0), (1,0,1,0), (0,1,1,0), (1,1,1,0)

(0,0,0,1) , (1,0,0,1), (0,1,0,1),(1,1,0,1)
 
(0,0,1,1), (1,0,1,1), (0,1,1,1), (1,1,1,1)


Another four dimensional object:
The hyper simplex!

point
line segment
triangle
tetrahedron ("simplex")


Cards and the fourth dimension.

(clubs,diamonds,hearts,spades)
                            (1,1,1,1)        (0,0,0,0)
                             (1,1,0,1)        (0,0,1,0)
                             (0,1,0,1)        (1,0,1,0)
                             (0,0,0,1)        (1,1,1,0)
                             (0,0,0,0)        (1,1,1,1)

Hamiltonian Tour:  move through each vertex once and only once.

13 cards "bridge hand"  : (5,3,0,5)   (4,2,6,1)

Other ways to think about the hypercube:
video

Other ways to use coordinates:

Maps
Coordinates for "earth" - the sphere
Coordinates for the torus!






The Tower of Hanoi

(clubs,diamonds,hearts,spades)
                            (1,1,1,1)        (0,0,0,0)
                             (1,1,0,1)        (0,0,1,0)
                             (0,1,0,1)        (1,0,1,0)
                             (0,0,0,1)        (1,1,1,0)
                             (0,0,0,0)        (1,1,1,1)

Hamiltonian Tour:  move through each vertex once and only once.

13 cards   : (5,3,0,5)   (4,2,6,1)

Other ways to think about the hypercube:
video

Other ways to use coordinates:
The Tower of Hanoi

The general problem: (illustrated with three objects)
Move objects that have an order (size) from one place to another using only a third place for "storage". No larger object can be placed on top of a smaller object during the move. Move only one object at a time!

    Solution of the 3 Tower of Hanoi Puzzle.
(Using playing cards 1,2,3)

Card- Post    Changes to cards   0-1 Changes to cards
                        (0, 0, 0)            (0, 0, 0)   
 
1.  1  →    B    (1, 0, 0)            (1, 0, 0)   
2.  2  →    C    (1, 1, 0)            (1, 1, 0)   
3.  1  →    C    (2, 1, 0)            (0, 1, 0)   
4.  3  →    B    (2, 1, 1)            (0, 1, 1)   
5.  1  →    A    (3, 1, 1)            (1, 1, 1)   
6.  2  →    B    (3, 2, 1)            (1, 0, 1)   
7.  1  →    B    (4, 2, 1)            (0, 0, 1)   

Record your moves. Assume that 1 represents the ace and the posts are labelled A, B and C.
[Use the seven moves below from the 3 tower puzzle as a start.] Record also the coordinates in 4 dimensional space for the number of changes made to the 4 cards and the 0-1 switches.

Solution of the 4 Tower of Hanoi Puzzle.

  Card→Post        Changes to cards    0-1 Switches to cards
                       (0, 0, 0, 0)            (0, 0, 0, 0)   
1.  1 → B        (1, 0, 0, 0)            (1, 0, 0, 0)   
2.  2 → C        (1, 1, 0, 0)            (1, 1, 0, 0)   
3.  1 → C        (2, 1, 0, 0)            (0, 1, 0, 0)   
4.  3 → B        (2, 1, 1, 0)            (0, 1, 1, 0)   
5.  1 → A        (3, 1, 1, 0)            (1, 1, 1, 0)           
6.  2 → B        (3, 2, 1, 0)            (1, 0, 1, 0)   
7.  1 → B        (4, 2, 1, 0)            (0, 0, 1, 0)   
8.
9.
10
11.
12.
13.
14.
15.

This finds a Hamiltonian tour on the hypercube!

Four puzzle Competition: elimination tournament? Prize?

2. Discuss how you would solve the 5-tower puzzle.
Move 4, then 1, then 4... so

How many moves would it take to solve the 5-tower puzzle?
15 + 1 + 15 =31 moves.
A 5 dimensional hypercube would use coordinates
( a,b,c,d,e) with a,b,c,d, or e either 0 or 1.... giving 2*2*2*2*2 = 32 vertices.

How many moves would it take to solve the 6-tower puzzle?

31 + 31 +1= 63

Based on the actual time it takes you now to do the 4-tower, how long do you think it would take you to do the 8-tower puzzle? Discuss the reasoning for your estimate briefly.
we used 10 seconds for 15 moves ( our fastest player's time!)
2 *2 *2* 2* 2* 2* 2* 2 -1=255  moves
           
255 *10/ 15 = about 170 second  = about 3minute
More on the  Hypercube and higher dimensions:

For a Hypercube
....
we use four "coordinates" and we can identify the vertices of the hypercube with qualities such as "left..right", "up... down", and "front ... back" and "inside... outside": (0,0,0,0) , (1,0,0,0), (0,1,0,0),(1,1,0,0)
 
(0,0,1,0), (1,0,1,0), (0,1,1,0), (1,1,1,0)

(0,0,0,1) , (1,0,0,1), (0,1,0,1),(1,1,0,1)
 
(0,0,1,1), (1,0,1,1), (0,1,1,1), (1,1,1,1)

Note: Dali use of the hypercube unfolded.
[connection w/ Banchoff}

What about a 5 dimensional cube?

Another five dimensional object:
The  5 dimensional hyper simplex!

point
line segment
triangle
tetrahedron ("simplex")
4 dimensional hypersimplex




Maps
Coordinates for "earth" - the sphere
Coordinates for the torus!

Activity for maps on Torus.
Locate P and Q on the map! give their coordinates.
torus_coord.gif
torus_coord1.gif