(180 - 360/n) + (180 - 360/k) + (180 - 360/p) = 360
 
  
  3*180 -360( 1/n+1/k+1/p)= 2*180 
  
1*180 = 360( 1/n+1/k+1/p) 
  
  So, for example, n=3, k=4 and p=
5 is not possible since 
  
| Number of polygons around a vertex | Equation for angle sum = 360 | Equivalent Arithmetic equation | Solutions to the arithmetic equations. | |||||||||||||||||||||||||||||||
| 3: n , k, p | 180 - 360/n+180 - 360/k+180 - 360/p = 360 | 1/n+1/k+1/p =1/2 | 
 | |||||||||||||||||||||||||||||||
| 4: n, k, p, z | 180 - 360/n+180 - 360/k+180 - 360/p 180 - 360/z = 360 | 1/n+1/k+1/p +1/z =2/2 =1 | 
 | |||||||||||||||||||||||||||||||
| 5: n, k, p, z, w | 180 - 360/n+180 - 360/k+180 - 360/p+180 - 360/z+180 - 360/w = 360 | 1/n+1/k+1/p +1/z+1/w =3/2 | 
 | 
|  |  | 
 
       
       
    
- Why are there only six?
- What about combining transformations to give new symmetries: