

Proposition 1: $\log(2)/\log(3)$ is irrational.

Proof: Assume that $\log(2)/\log(3) = \log_3(2) = p/q$, with p, q integers and nonzero (no need to assume that the fraction is in lowest terms!) Then $2 = 3^{p/q}$ or $2^q = 3^p$.

But this is impossible, for the left hand side is even and the right hand side is odd.

EOP.

Proposition 2. $\sqrt{2}$ is irrational.

Proof: (attributed to Dedekind) Suppose $\sqrt{2}$ - being positive - is a rational number.

Then there is a positive integer n for which $n \times \sqrt{2}$ is an integer.

But this means that $n(\sqrt{2} - \text{integerpart}(\sqrt{2}))$ is a positive integer that is smaller than n . However, $n(\sqrt{2} - \text{integerpart}(\sqrt{2})) \times \sqrt{2}$ is an integer. If n were chosen to be the smallest such positive integer this would give a contradiction.

EOP.

Proposition 3: There is an irrational number r such that $r^{\sqrt{2}}$ is rational.

Proof: If $\sqrt{3^{\sqrt{2}}}$ is a rational number, then $\sqrt{3}$ is the desired example. If $\sqrt{3^{\sqrt{2}}}$ is an irrational number then notice that $(\sqrt{3^{\sqrt{2}}})^{\sqrt{2}} = 3$, which is a rational number.

Hence either $\sqrt{3}$ or $\sqrt{3^{\sqrt{2}}}$ is an irrational number r such that $r^{\sqrt{2}}$ is rational.

EOP

1. Consider the following statement:

If a and b are relatively prime integers, then $\log(a)/\log(b)$ is irrational.

- a. Discuss briefly how proposition 1 is a special case of this statement.
- b. Following the proof of proposition 1, prove the statement.

2. Using the argument of the proof of proposition 2 as a model, prove $\sqrt{3}$ is irrational.

3. In the proof of Proposition 3, the number $\sqrt{3}$ played an important role. Give a proof for the proposition without using the number $\sqrt{3}$. [Hint: Use $\sqrt{5}$.]

4. Assume that $\sqrt[3]{5}$ is an irrational number. Prove: There exists an irrational number r such that $r^{\sqrt[3]{5}}$ is a rational number.