

Math 240 Fall. 2006

Equivalence Relation Example

Let $S = \{ (a, b) : a \text{ and } b \in \mathbb{Z}, b \neq 0 \}$.

Define the relation R on S by $(a,b)R(c,d)$ is true if and only $ad = bc$

Proposition: R is an equivalence relation on S .

Proof:

i. For any $(a,b) \in S$, $ab = ba$ so by the definition, $(a,b)R(a,b)$, so R is reflexive.

ii. Suppose (a,b) and (c,d) are elements of S and $(a,b) R (c,d)$ is true. Then by definition, $ad = bc$. Thus $cb = da$ and by definition, $(c,d)R(a,b)$ is true. Thus R is symmetric.

iii. Suppose (a,b) , (c,d) , and (e,f) are elements of S and $(a,b) R (c,d)$ and $(c,d)R(e,f)$ are true.

Then by definition, $ad = bc$ (*) and $cf = de$ (**).

Case 1: If $a = 0$ then since $b \neq 0$, $c = 0$. And since $d \neq 0$, $e = 0$. Thus $af = 0 = be$ and (by definition) $(a,b)R(e,f)$.

Case 2. If $a \neq 0$, then $c \neq 0$ and $d \neq 0$. Now $adf = bcf$ (from *) and $bcf = bde$. Now using the transitivity of “ $=$ ”, we have $adf = bde$ and since $d \neq 0$, $af = be$ and (by definition) $(a,b)R(e,f)$.

Thus (in either case) we have shown that $(a,b)R(e,f)$ and R is transitive.

Since we have shown r is reflexive, symmetric and transitive, R is an eq.

Since we have shown r is reflexive, symmetric and transitive, R is an equivalence relation on S .
EOP.