MATH 210 Calculus III 
Spring, 2002 MWF 12:00 -1:10  SH 128 
Course Assignments



Back to Flashman's Math 210 Main Page :)

Last updated: 3-25-02


MATH 210: Calculus III Spring,2002
Tentative Daily Topic Schedule
Week
/Day
Monday Wednesday Friday
1 1/23 Introduction- 
Begin review
Variables- relations-functions. 
 1/25 What is calculus? Differential Equations?
Introduction to 3-dimensional coordinate geometry. 13.1
Introduction to vectors. 13.2
"1 variable controlling 2" 
11.1 Parametric curves . 
2  1/28 Visualizations: Transformations and graphs.   1/30 More on vectors and functions
"1 variable controlling 2," 2 controlling 1".
Lines: parametric and vector equations 2 &3 dim. 13.5
The tangent problem 11.2
"1 variable controlling 2 (or 3)." 
 2/1 Vector functions, tangent vectors and velocity. 14.1, 14.2
Week/Day Monday Wednesday Friday
3 2/4 Tangent lines, Lengths: segments, vectors, arcs. 11.2, 11.3, 14.3 speed  2/6  Smooth curves. 
Differential equations and integrals of vector functions.
Acceleration 14.4 
Arc length as an integral of speed.
 2/8 The Dot Product. 13.3.
4 2/11 More on dot products. 2/13 Finish up 1 variable controlling 2 and 3.  Calculus for r'(t).
Curvature Formulae 14.3
2/15 Begin "2 controlling 1 variable". Graphs. 
Scalar fields
5 2/18 Graphs and level curves of Functions with 2 controlling variables. Begin Partial Derivatives 2/20 Second order Partial derivatives.
Start limits and continuity
2/22 Start Tangent Planes, Differentials.
Tentative Daily Topic Schedule
Week/Day Monday Wednesday Friday
6 2-25 Limits and Continuity. Closeness, Approximations... concepts and definitions. 2-27 Differentials, C1 and differentiable functions.The geometry of differentiability- Tangent planes.  3-1 The Chain Rule (1-2-1) 2-2-1 chain rule
3-4 Directional derivatives and the gradient. Geometry of the gradient. 3-6 Local Extremes and the gradient continued.  3-8 Testing for extremes. 
8 Exam #1 Self Scheduled for Thursday 3-14 3-11 Extrema on compact sets. 3-13 Breath. 3-15 Quadratic forms. Finish discussion of the discriminant test. 
9 3-18 No Class (Break) 3-20 3-22
10 3-25 LaGrange Multiplier, extremes, and odds and ends.  3-27 Quadric Surfaces 13.6  3-29What about 4 variables: 1-3, 3-1, 2-2 
Linear regression and "least squares."15.7 problem 51.
11 4-1 NO Classs  C.C. Day 4-3 Finish 2-2 Transformations and vector fields. Briefly 2-3 visualized. Start Integration over rectangles
The area problem.11.2(?)
4-6More on Integration and iterated integrals.
Fubini's Theorem.
12 4-8  Beginning-basic properties.applications volumes. Integration over compact regions.
4-10 More Integration over compact regions.Properties of integration in the plane.
4-12 .Cross products. More on planes and normal vectors with cross products.. 

 
 
Tentative Daily Topic Schedule
Week/Day Monday Wednesday Friday
13 4-15 More Integration in the plane.
Cross Product Application to tangent plane.Begin Polar coordinates
4-17 Polar coordinates- curves in the plane. Tangents. 4-19 Arc length in Polar coordinates.
Integration with polar coordinates.
14 Exam #2 Thursday 4-25 4-22  The integral of e^(-x^2). Application of integration in the plane to mass and probability. Begin Integration in 3D. Cartesian coordinates.  4-24 More integration in 2 and 3 dimensions and probability.  4-26 Cylindrical  coordinates.
Integration in Cylindrical.
15 4-29  Begin spherical coordinates
More Integration in Cylindrical and spherical coordinates 
5- 1 Integration in spherical coordinates. 5-3 
Integration surface Area
Vector fields and line integrals
16 Talks  5-6Talks 5-8 Integration Over curves.
Vector fields and line integrals
5-1 0 Review.!?
Green's theorem?
What are limits?
C1 implies differentiable?
Mixed partials are equal.? 

Assignment Problem List I

Not yet complete.

Chapter.Section (pages)
Date Due:
Problems
Interesting/optional
Review of Calc I and II] 1-25 Look at Final Exams from Calc I and II
11.1 Read- Consider what this has to do with vectors. 1/25(i)
2/1 (ii)
(i) 1-7 odd, 17,19,23, 22, 28 
(ii) 4,6,8, 11-13, 25, 40 
34, 35, 37,42,43
11.2 (i) (682-685:tangents) 
(ii)
(iii) (685-687: area) 
2/6 (i) (i) 1,3,5,6,8
(ii) 9, 11,13, 15, 25, 32
(iii) 33- 35, 39
11.3 arc length (689-691 middle)  2/8 1-5, 9, 15
13.1  1/28(i)
1/30(ii)
(i) 1, 3, 4, 7, 11, 13, 15, 23-29 odd
(ii) 5, 6, 21, 31,33,35-37
(i) 19
13.2  1/28(i)
1/30 (ii)
(i) 7-9,13,14
(ii)17,19,21,23-25,  29
 
13.5 (i) pages 846-848
(ii) read pages 848-849 to example 4
(iii)
2/1(i)*2/13 (15?) (ii)2/15 
(iii)

 

(i) 2-5,7,11, 17
(ii) 19-25 odd
(iii)27, 29, 31,49;
(iv) 51, 53-55, 61, 63
 
14.1  2/1(i) (i) 3,4,7-13, 16, 17,21,23
(ii) 24,25, 28
(ii)33
14.2 vector derivatives and  tangent vectors 
integrals and de's 
2/4 (i)
2/6 (ii) 
2/8 (iii)
(i) 1,3-5,9,13,14
(ii) 17-19, 27, 29
(iii) integrals33-39 odd, 38, 40
(iv)41,42,44,45,49
14.3 (i) arc length (883-885)
(ii) Curvature I (p885and Ex.3)
(iii) Example 5
2/8(i)
2/15 (ii)
(i)1-6 arc length
(ii)11b,13 b curvature
(iii)21-23,29,31,32
 (ii)18
14.4 velocity and acceleration (891-895) 2/8 (i)1-7 odd, 9-13, 15,17-19  
13.3 dot product 2/11(i) 2 dim
2/13(ii) 3 dim
2/15(iii)
(i) 1,3,4,8-10,15,16, 23, 24, 29
(ii) 5-7, 11, 17, 18, 21, 25-28, 30, 31, 54
(iii) 39,40,45,46
49,51, 53, 55, 56, 58, 61-63
15.1 2/18(i), (ii)
2/20(iii),(iv)
(i) 1,2, 5-9 odd, 15,17 
(ii) Sketch a scalar field for the integer lattice of [-2,2]x[-2,2] : 21-27,35-41 odd 
(iii) 30, 35-37,43, 51-56 (Graphs)
(iv) 9, 19, 33, 34, 61,65
 
15.2 
2/22 read only.
3/1
3,4, 5-11odd, 21,25, 27
15.3 (i) read pp929-932 2/20(i)Read only
2/22 (i) 
2/25 (ii).2/27 (iii)

(i) 3,11-25 odd
(ii) 6, 20,22, 32, 35, 37, 43, 45,46, 51, 56
(iii) 63, 65, 66, 68(a,c), 69, 76
 87
15.4 2/25 (i)
3/1 (ii)
3/1 (iii)
(i) 1-5,7
(ii) 23-27,29, 17,18,31,36
(iii) 11, 12, 35, 37
(iii)41,42
15.5 (i) 1-2-1 p952-3 (Ex. 2)
(ii) 2-2-1 p953-956
(iii) implicit... p956-7
3/4 (i)
3/4 (ii)
3/6 (iii)
(i) 1-4, 13, 33
(ii)  7-11 odd, 19,20, 37, 41
(iii) 25-31 odd
 
Exam #1 covers Assigned Material through 3/8. including: 11.1-11.3, 13.1,13.2,13.3,13.5, 14.1-14.4. 15.1-15.5.
15.6 (i) read pp960-963 3/6(i)Read only.
3/8(i)
3/11 (ii)
(i)7,8, 3,5, 11 -14
(ii) 21-23,27, 32a,34,35,45
 
15.7 3/8 3/11 (i)
3/13 (ii)
(i)5-13 odd 
(ii)6,14,15,17, 27,29,31
 
15.8 pp985-989 3/27 1-9 odd,23-31 odd  
13.6  3/29 (i) 9-15 odd, 21-28, 37-39, 41,43 47,49
16.1 (i) pp 1001-1005
(ii) 1006-1008
4/5 (i) 
4/8 (ii)
(i) 3a,5,9 
(ii) 11-13, 17,18
16.2 4/8 (i)
4/10 (ii)
(i)1-11 odd, 4, 8, 25
(ii) 13-15, 18, 29
13.4 4/15 (i)
4/17 (ii)
(i) 1-9 odd, 13, 15, 23
(ii)29,30, 33, 41,42,43
18
16.3 4/12 (i)
4/19 (ii)
4/22 (iii)
(i)1-9 odd, 8, 11-15 odd
(ii) 12,19, 33-35
(iii) 39-43 odd, 44, 45
16.5 1034-1038 (probability) 4/24 23, 25
11.4 4/19 (i) and (ii)
4/22 (iii)
(i) 1-3,5,7-11, 15-17, 31-35
(ii)33-45 odd, 56
(iii) 57-65 odd
(ii) 71-73,81
 Examination #2 Self Scheduled 4/25: Covers material assigned through ***4-22***. 15.5-15.8, 13.6, 16.1-16.3, 13.4, 11.4, 16.4? + TBA
11.5 p707 polar coordinates (Arc length) 4/22 45-49 odd
13.7 Cylindrical and spherical coordinates. 5/1 3-9 odd, 13-19 odd, 31,35,36,9, 40, 49-51,
16.4 Integration in polar coordinates. 4/22 (i)
4/24 (ii)
(i)1-11 odd
(ii) 15-17, 19-23 odd, 27, 33
16.7 Integration in 3 space (rectangular). 4/29 (i)
5/1 (ii)
(i)1-11 odd, 17
(ii) 25,  37 find mass only, 47
16.8 Integration in 3 space (Cylindrical and polar) 5/1 (i)
5/3 (ii)
(i)1,2, 5,7 , 15
(ii) 3,17,33,35
16.6 Surface area 5/6  1-7 odd
17.1 Vector Fields 5/6 1-7 odd, 15-18,21,27,29-32
17.2 Line Integrals 5/8 1-7 odd,17, 23
17.2 FT for Line Integrals 5/8 Read