Using Mapping Diagrams to Understand Functions AMATYC Webinar October 15, 2013 Martin Flashman

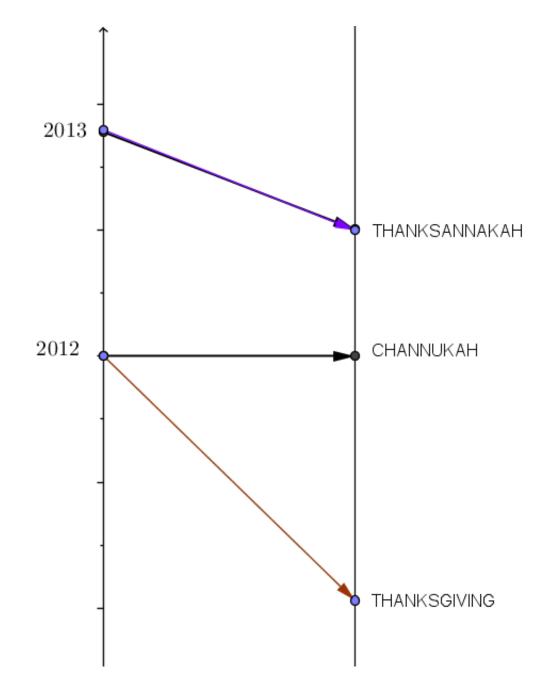
> Professor of Mathematics Humboldt State University <u>flashman@humboldt.edu</u> http://users.humboldt.edu/flashman

#### **Background Questions**

- Hands Up or Down...
  - 1. Are you familiar with Mapping Diagrams?
  - 2. Have you used Mapping Diagrams to teach functions?
  - 3. Have you used Mapping Diagrams to teach content besides function definitions?

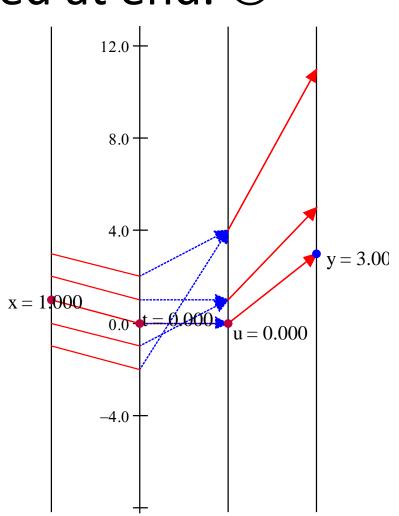
### Mapping Diagrams

A.k.a. Function Diagrams Dynagraphs



Preface: Quadratic Example Will be reviewed at end. ③

- *g*(*x*) = 2 (*x*-1)<sup>2</sup> + 3 Steps for *g*: 1. Linear:
  - Subtract 1.
- 2. Square result.
- 3. Linear: Multiply by 2 then add 3.





Written by Howard Swann and John Johnson

A fun source for visualizing functions with mapping diagrams at an elementary level.

Original version Part 1 (1971) Part 2 and Combined (1975) This is copyrighted material!



YOUR FRIENDLY NEIGHBORHOOD FUNCTION CONSISTS OF TWO SETS AND A BUNCH OF ARROWS THAT OBEY

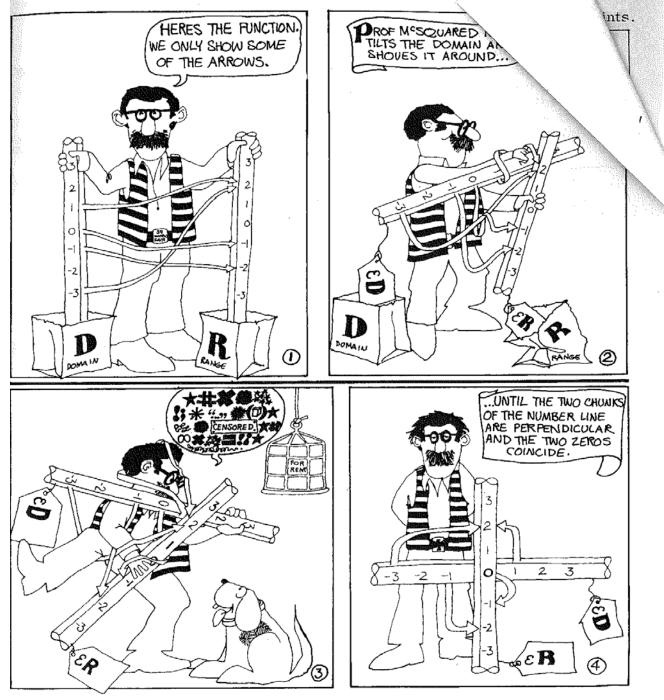
THE ARROWS ALWAYS START FROM RULE THE SAME SET, CALLED THE DOMAIN AND GO TO THE OTHER SET, CALLED THE RANGE.

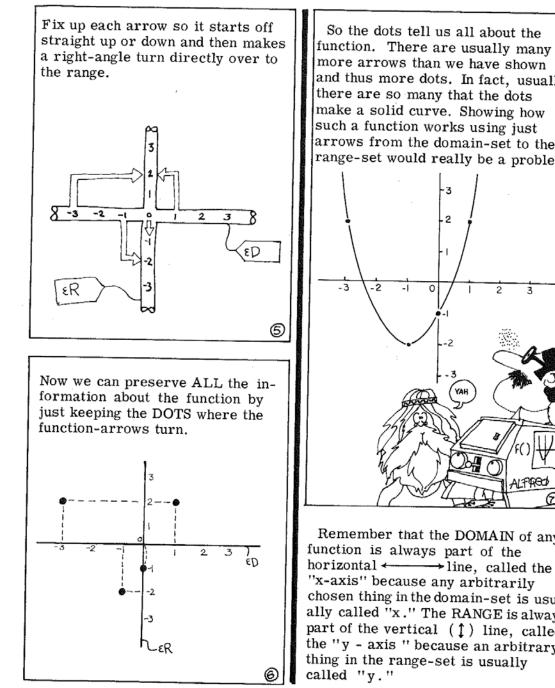


EVERYTHING IN THE DOMAIN-RULE SET MUST HAVE EXACTLY ONE ARROW FROM IT, EVERYTHING IN THE RANGE-SET MUST HAVE AT LEAST ONE ARROW TO IT. (IT'S OK TO HAVE 2 ARROWS TO 1 THING .)

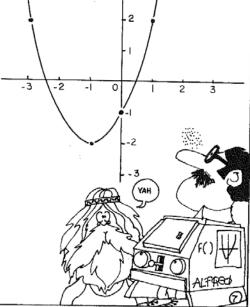
So two or more arrows can hit the same thing in the range-set, but only one arrow can come from any particular thing in the domain-set.

Using arrows in the RULES unfortunately has its drawbacks -as functions become more elaborate, the arrows can get pretty difficult to follow . . . .

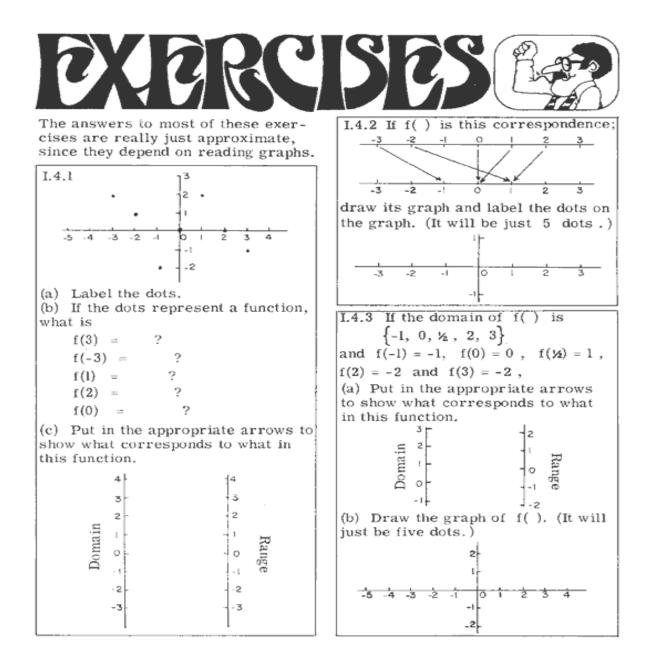




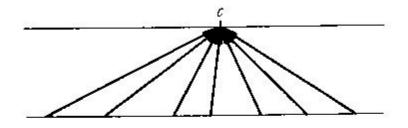
more arrows than we have shown and thus more dots. In fact, usually there are so many that the dots make a solid curve. Showing how such a function works using just arrows from the domain-set to the range-set would really be a problem.



Remember that the DOMAIN of any function is always part of the horizontal  $\longleftrightarrow$  line, called the "x-axis" because any arbitrarily chosen thing in the domain-set is usually called "x." The RANGE is always part of the vertical (1) line, called the "y - axis " because an arbitrary thing in the range-set is usually



#### Figure from Ch. 5 *Calculus* by M. Spivak



(a) f(x) = c

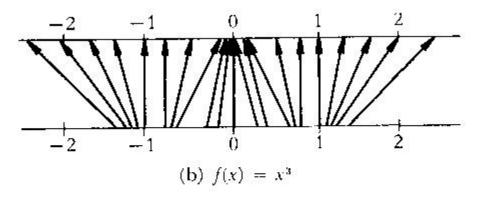


FIGURE 2

#### Main Resource for Remainder of Webinar

- Mapping Diagrams from A (algebra) to C(alculus) and D(ifferential) E(quation)s. A Reference and Resource Book on Function Visualizations Using Mapping Diagrams (Preliminary Sections- NOT YET FOR publication)
- <u>http://users.humboldt.edu/flashman/MD/section-1.1VF.html</u>

## Linear Mapping diagrams

We begin our more detailed introduction to mapping diagrams by a consideration of linear functions :

Download and try the worksheet now: Worksheet.VF1.pdf.

Thumbs up when you are ready to proceed.

#### **Visualizing Linear Functions**

- Linear functions are both necessary, and understandable- even without considering their graphs.
- There is a sensible way to visualize them using "mapping diagrams."
- Examples of <u>important function features (like</u> <u>slope and intercepts)</u> can be illustrated with mapping diagrams.
- Activities for students engage understanding both function and linearity concepts.
- Mapping diagrams use simple straight edges as well as technology GeoGebra and SAGE.

## Linear Functions: Tables

| ×  | 5 x - 7 |
|----|---------|
| 3  |         |
| 2  |         |
| 1  |         |
| 0  |         |
| -1 |         |
| -2 |         |
| -3 |         |

Complete the table. x = 3,2,1,0,-1,-2,-3 f(x) = 5x - 7

For which x is f(x) > 0?

## Linear Functions: Tables

| X  | 5 x - 7 |
|----|---------|
| 3  | 8       |
| 2  | 3       |
| 1  | -2      |
| 0  | -7      |
| -1 | -12     |
| -2 | -17     |
| -3 | -22     |

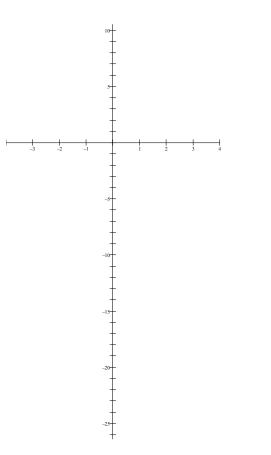
Complete the table. x = 3,2,1,0,-1,-2,-3 f(x) = 5x - 7

For which x is f(x) > 0?

## Linear Functions: On Graph

Plot Points (x, 5x - 7):

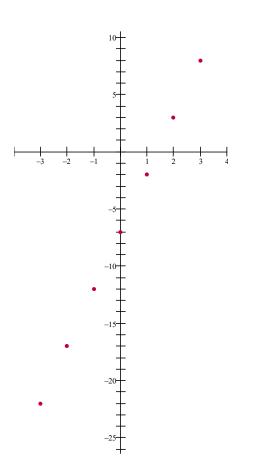
| ×  | 5 x - 7 |
|----|---------|
| 3  | 8       |
| 2  | 3       |
| 1  | -2      |
| 0  | -7      |
| -1 | -12     |
| -2 | -17     |
| -3 | -22     |



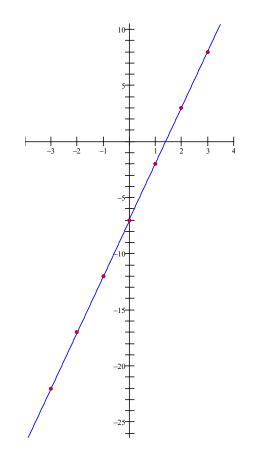
## Linear Functions: On Graph

Connect Points  $(x 5x - 7)^{1}$ 

| (X, JX = 7)   |                  |
|---------------|------------------|
| ×             | 5 x - 7          |
| 3             | 8                |
| 2             | 3                |
| 1             | -2               |
| 0             | -7               |
| -1            | -12              |
| -2            | -17              |
| -3            | -22              |
| 0<br>-1<br>-2 | -7<br>-12<br>-17 |



## Linear Functions: On Graph



#### Connect the Points

| ×  | 5 x - 7 |
|----|---------|
| 3  | 8       |
| 2  | 3       |
| 1  | -2      |
| 0  | -7      |
| -1 | -12     |
| -2 | -17     |
| -3 | -22     |

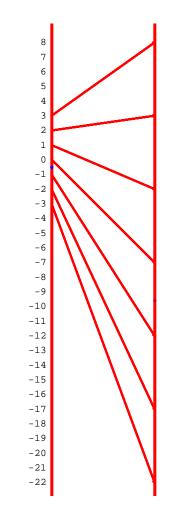
Linear Functions: Mapping diagrams What happens before the graph.

 Connect point x to point 5x - 7 on axes

| ×  | 5 x - 7 |
|----|---------|
| 3  | 8       |
| 2  | 3       |
| 1  | -2      |
| 0  | -7      |
| -1 | -12     |
| -2 | -17     |
| -3 | -22     |

#### Linear Functions: Mapping diagrams What happens before the graph.

| ×  | 5 x - 7 |
|----|---------|
| 3  | 8       |
| 2  | 3       |
| 1  | -2      |
| 0  | -7      |
| -1 | -12     |
| -2 | -17     |
| -3 | -22     |



#### Examples on Excel / Geogebra / SAGE

- Excel example
- Geogebra example
- SAGE example

Download and do worksheet problem #2: <u>Worksheet.LF.pdf.</u>

Thumbs up when you are ready to proceed.

### Simple Examples are important!

- f(x) = x + C Added value: C
- f(x) = mx Scalar Multiple: m
   Interpretations of m:
  - -slope
  - -rate
  - Magnification factor
  - -m > 0 : Increasing function
  - m = 0 : Constant function [WS Example]
  - m < 0 : Decreasing function [WS Example]</pre>

Simple Examples are important! f(x) = mx + b with a mapping diagram --Five examples:

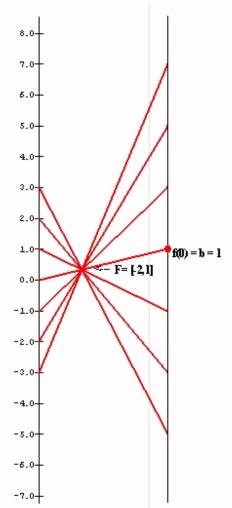
- Example 1: m = -2; b = 1: f(x) = -2x + 1
- Example 2: m = 2; b = 1: f(x) = 2x + 1
- Example 3:  $m = \frac{1}{2}$ ; b = 1:  $f(x) = \frac{1}{2}x + 1$
- Example 4: m = 0; b = 1: f(x) = 0 x + 1
- Example 5: m = 1; b = 1: f(x) = x + 1

Which diagram(s) have crossing arrows?

# Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

Example 1: 
$$m = -2$$
;  $b = 1$   
f (x) = -2x + 1

- Each arrow passes through a single point, which is labeled F = [- 2,1].
  - $\Box \text{ The point } \mathbf{F} \text{ completely determines the function } f.$ 
    - given a point / number, x, on the source line,
    - there is a unique arrow passing through
       F
    - meeting the target line at a unique point / number, -2x + 1,
    - which corresponds to the linear function's value for the point/number, x.



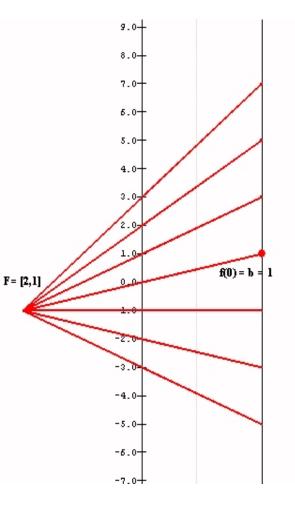
# Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

Example 2: 
$$m = 2$$
;  $b = 1$   
f(x) = 2x + 1

Each arrow passes through a single point, which is labeled

F = [2,1].

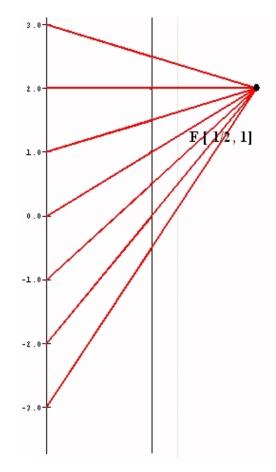
- $\Box \text{ The point } \mathbf{F} \text{ completely determines} \\ \text{the function } f.$ 
  - given a point / number, x, on the source line,
  - there is a unique arrow passing through
     F
  - meeting the target line at a unique point / number, 2x + 1,
  - which corresponds to the linear function's value for the point/number, x.



# Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

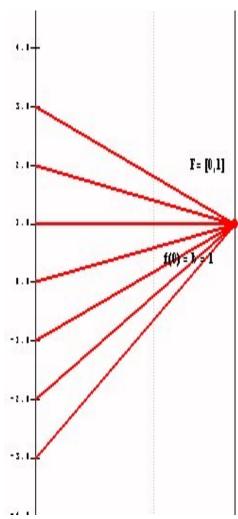
- Example 3: m = 1/2; b = 1 f(x) = ½ x + 1
- Each arrow passes through a single point, which is labeled F = [1/2,1].
  - $\Box \text{ The point } \mathbf{F} \text{ completely determines the function } f.$ 
    - given a point / number, x, on the source line,
    - there is a unique arrow passing through F
    - meeting the target line at a unique point / number, ½ x + 1,

which corresponds to the linear function's value for the point/number, x.



## Visualizing f(x) = mx + b with a mapping diagram -- Five examples: Example 4: m = 0; b = 1 f(x) = 0 x + 1

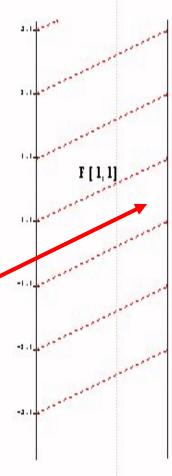
- Each arrow passes through a single point, which is labeled F = [0,1].
  - $\Box$  The point **F** completely determines the function *f*.
    - given a point / number, x, on the source line,
    - there is a unique arrow passing through F
    - meeting the target line at a unique point / number, f(x)=1,
    - which corresponds to the linear function's value for the point/number, x.



#### Visualizing f(x) = mx + b with a mapping diagram -- Five examples Example 5: m = 1; b = 1f(x) = x + 1

- Unlike the previous examples, in this case it is not a single point that determines the mapping diagram, but the single arrow from 0 to 1, which we designate as F[1,1]
- It can also be shown that this single arrow completely determines the function. Thus, given a point / number, x, on the source line, there is a unique arrow passing through x parallel to F[1,1] meeting the target line a unique point / number, x + 1, which corresponds to the linear function's value for the point/number, x.
  - The single arrow completely determines the function *f*.
    - given a point / number, x, on the source line,
    - there is a unique arrow through x parallel to F[1,1]
    - meeting the target line at a unique point / number, x + 1,

which corresponds to the linear function's value for the point/number, x.



#### Function-Equation Questions with linear focus points

- Solve a linear equations:
  - 2x+1 = 5
  - 2x+1 = -x + 2
  - Use focus to find x.

"fixed points" : f(x) = x
Use focus to find x.

#### More on Linear Mapping diagrams

We continue our introduction to mapping diagrams by a consideration of the <u>composition of linear functions.</u>

#### Compositions are keys!

An example of composition with mapping diagrams of simpler (linear) functions.

2.0-

1.0-

0.0

-1.0-

-2.0-

-3.0

$$-g(x) = 2x; h(u)=u+1$$
  

$$-f(x) = h(g(x)) = h(u)$$
  
where u =g(x) = 2x  

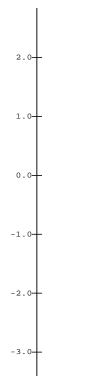
$$-f(x) = (2x) + 1 = 2x + 1$$
  

$$f(0) = 1 \text{ slope} = 2$$

### Compositions are keys!

Linear Functions can be understood and visualized as compositions with mapping diagrams of simpler linear functions.

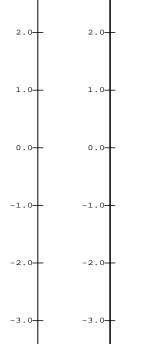
$$-f(x) = 2 x + 1 = (2x) + 1$$



### Compositions are keys!

Linear Functions can be understood and visualized as compositions with mapping diagrams of simpler linear functions.

Example: f(x) = 2(x-1) + 3 g(x)=x-1 h(u)=2u; k(t)=t+3• f(1)=3 slope = 2



#### Question for Thought

- For which functions would mapping diagrams add to the understanding of composition?
- In what other contexts are composition with "x+h" relevant for understanding function identities?
- In what other contexts are composition with "-x" relevant for understanding function identities?

Inverses, Equations and Mapping diagrams

- Inverse: If f(x) = y then invf(y)=x.
- So to find invf(b) we need to find any and all x that solve the equation f(x) = b.
- How is this visualized on a mapping diagram?
- Find b on the target axis, then trace back on any and all arrows that "hit"b.

# Mapping diagrams and Inverses Inverse linear functions:

- Use transparency for mapping diagrams-- Copy mapping diagram of f to transparency.
   - Flip the transparency to see mapping diagram of inverse function g. ("before or after") invg(g(a)) = a; g(invg(b)) = b;
- Example i: g(x) = 2x; invg(x) = 1/2 x
- Example ii: h(x) = x + 1; invh(x) = x 1

-3.0+

# Mapping diagrams and Inverses

Inverse linear functions:

socks and shoes with mapping diagrams

2.0-

1.0-

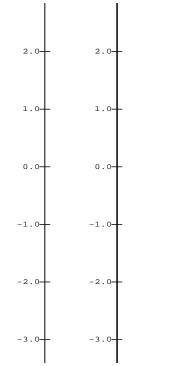
• 
$$h(x) = x + 1$$
;  $invh(x) = x - 1$ 

• 
$$f(x) = 2 x + 1 = (2x) + 1$$
  
-  $g(x) = 2x; h(u)=u+1$   
- inverse of f:  $invf(x)=invh(invg(x))=1/2(x-1)$ 

## Mapping diagrams and Inverses

Inverse linear functions:

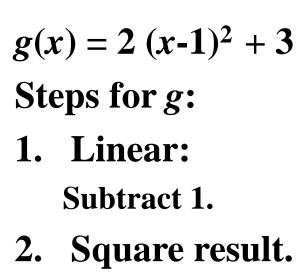
- "socks and shoes" with mapping diagrams
- f(x) = 2(x-1) + 3:
   g(x)=x-1 h(u)=2u; k(t)=t+3
   Inverse of f: 1/2(x-3) +1



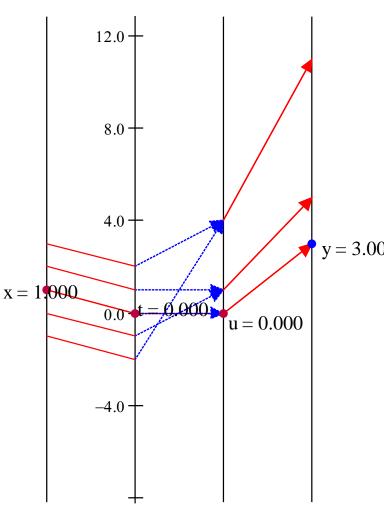
## Question for Thought

- For which functions would mapping diagrams add to the understanding of inverse functions?
- How does "socks and shoes" connect with solving equations and justifying identities?

Closer: Quadratic Example From Preface. ③



3. Linear: Multiply by 2 then add 3.



# Thanks The End!

#### **Questions?**

#### <u>flashman@humboldt.edu</u> http://www.humboldt.edu/~mef2

#### References

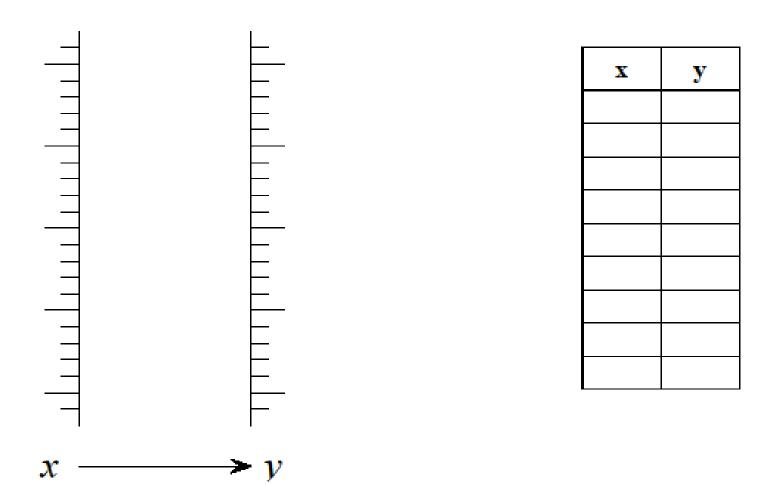
#### Mapping Diagrams and Functions

- <u>SparkNotes > Math Study Guides > Algebra II:</u> <u>Functions</u> Traditional treatment.
  - <u>http://www.sparknotes.com/math/algebra2/functions/</u>
- <u>Function Diagrams.</u> by Henri Picciotto Excellent Resources!
  - Henri Picciotto's Math Education Page
  - Some rights reserved
- Flashman, Yanosko, Kim https://www.math.duke.edu//education/prep02/tea ms/prep-12/

#### Function Diagrams by Henri Picciotto

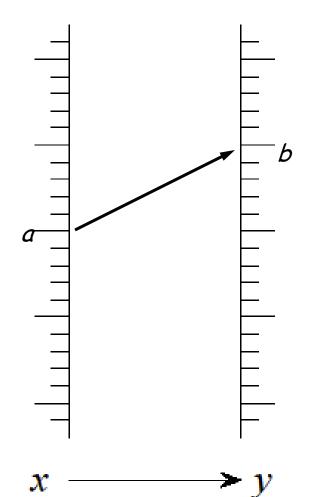
#### Function Diagrams

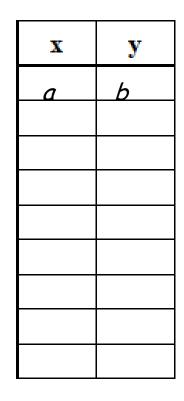
Henri Picciotto, www.picciotto.org/math-ed



#### Function Diagrams

Henri Picciotto, www.picciotto.org/math-ed





### More References

 Goldenberg, Paul, Philip Lewis, and James O'Keefe. "Dynamic Representation and the **Development of a Process Understanding of** Function." In The Concept of Function: Aspects of Epistemology and Pedagogy, edited by Ed Dubinsky and Guershon Harel, pp. 235– 60. MAA Notes no. 25. Washington, D.C.: Mathematical Association of America, 1992.

### More References

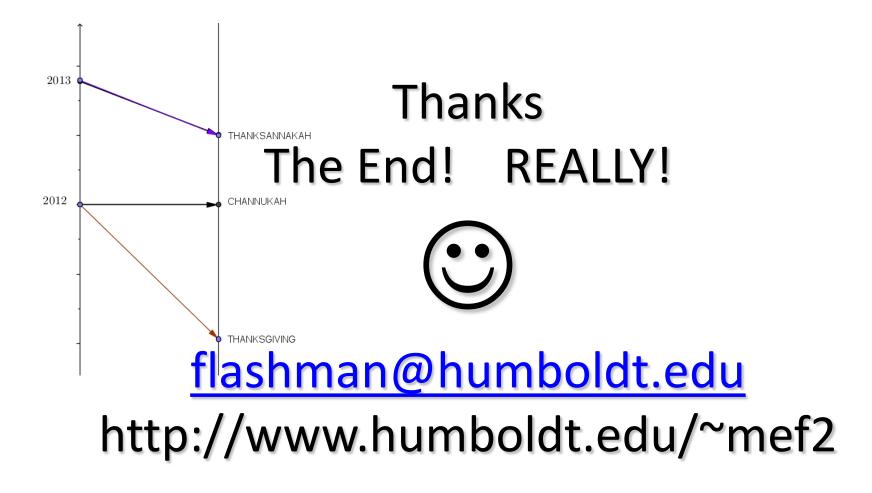
- <u>http://www.geogebra.org/forum/viewtopic.php?f=2</u> &t=22592&sd=d&start=15
- <u>"Dynagraphs}--helping students visualize function</u> <u>dependency</u>
   <u>dependency</u>
   <u>GeoGebra User Forum</u>
- "degenerated" dynagraph game ("x" and "y" axes are superimposed) in GeoGebra: <u>http://www.uff.br/cdme/c1d/c1d-html/c1d-en.html</u>

#### Think about These Problems

- **M.1** How would you use the Linear Focus to **find the mapping diagram for the function inverse for a linear function when m≠0**?
- M.2 How does the choice of axis scales affect the position of the linear function focus point and its use in solving equations?
- M.3 Describe the visual features of the mapping diagram for the quadratic function  $f(x) = x^2$ . How does this generalize for *even* functions where f(-x) = f(x)?
- M.4 Describe the visual features of the mapping diagram for the cubic function  $f(x) = x^3$ . How does this generalize for *odd* functions where f(-x) = -f(x)?

#### MoreThink about These Problems

- L.1 Describe the visual features of the mapping diagram for the quadratic function  $f(x) = x^2$ . Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- **L.2 Describe the visual features of the mapping diagram for the quadratic function**  $f(x) = A(x-h)^2 + k$  using composition with simple linear functions. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.3 Describe the visual features of a mapping diagram for the square root function  $g(x) = \sqrt{x}$ and relate them to those of the quadratic  $f(x) = x^2$ . Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.4 Describe the visual features of the mapping diagram for the reciprocal function f(x) = 1/x. Domain? Range? "Asymptotes" and "infinity"? Function Inverse?
- L.5 Describe the visual features of the mapping diagram for the linear fractional function f(x) = A/(x-h) + k using composition with simple linear functions. Domain? Range? "Asymptotes" and "infinity"? Function Inverse?



#### Other Topics for Mapping Diagrams Before Calculus:

- Quadratic Functions
- Exponential and Logarithmic Functions
- Trigonometric Functions

# Quadratic Functions

- Usually considered as a key example of the power of analytic geometry- the merger of algebra with geometry.
- The algebra of this study focuses on two distinct representations of of these functions which mapping diagrams can visualize effectively to illuminate key features.

$$- f(x) = Ax^{2} + Bx + C$$
  
 $- f(x) = A (x-h)^{2} + k$ 

# Examples

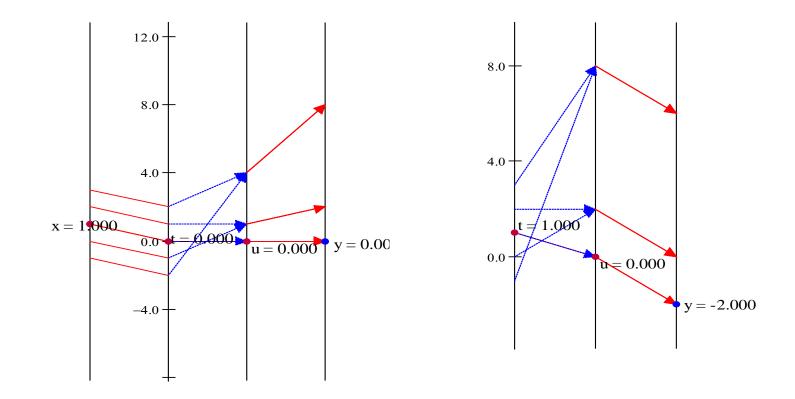
• Use compositions to visualize

$$-f(x) = 2(x-1)^2 = 2x^2 - 4x + 2$$

$$-g(x) = 2(x-1)^2 + 3 = 2x^2 - 4x + 5$$

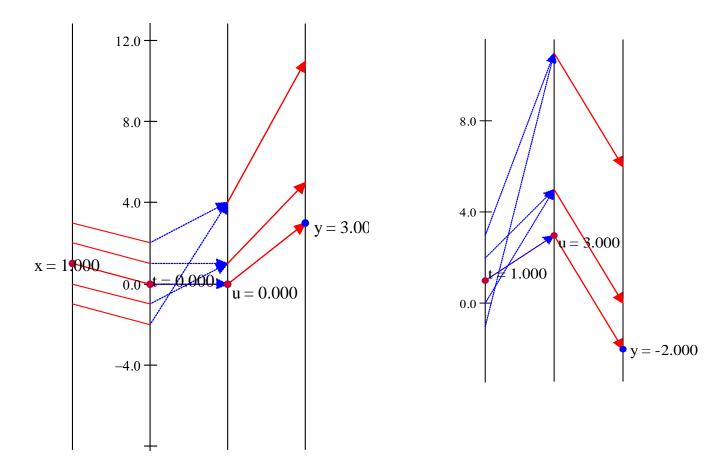
- Observe how even symmetry is transformed.
- These examples illustrate how a mapping diagram visualization of composition with linear functions can assist in understanding other functions.

# Quadratic Mapping diagrams $f(x) = 2 (x-1)^2 = 2x^2 - 4x + 2$



## Quadratic Mapping diagrams

 $g(x) = 2 (x-1)^2 + 3 = 2x^2 - 4x + 5$ 



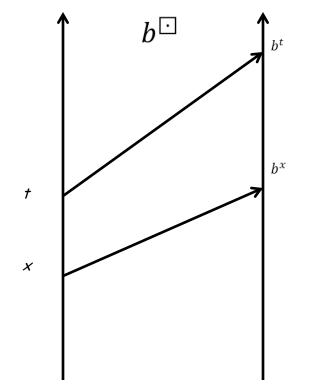
Quadratic Equations and Mapping diagrams

- To solve  $f(x) = Ax^2 + Bx + C = 0$ .
- Find 0 on the target axis, then trace back on any and all arrows that "hit" 0.
- Notice how this connects to x = -B/(2A) for symmetry and the issue of the number of solutions.

# **Definition**

- Algebra Definition  $b^{L} = N$  if and only if log  $_{b}(N) = L$
- Functions:
- f(x)= b<sup>x</sup> = y; invf(y) = log b(y)
   = x
- log <sub>b</sub> = invf

# Mapping diagrams for exponential functions and "inverse"

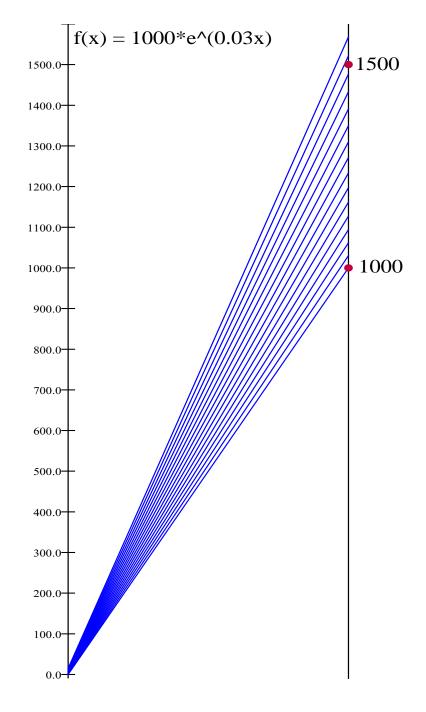




## Visualize Applications with Mapping diagrams

# "Simple" Applications

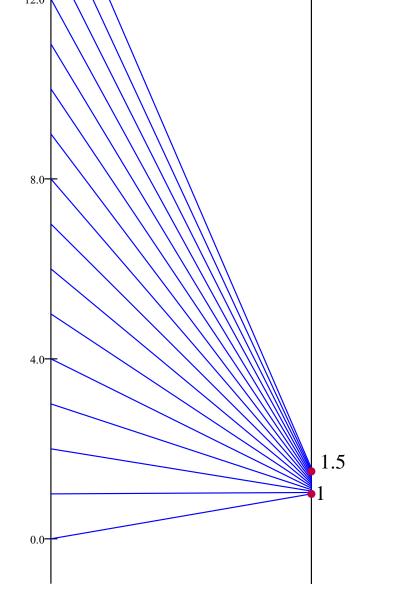
I invest \$1000 @ 3% compounded continuously. How long must I wait till my investment has a value of \$1500? Solution:  $A(t) = 1000 e^{0.03t}$ . Find t where A(t) = 1500. Visualize this with a mapping diagram before further algebra.



# "Simple" Applications

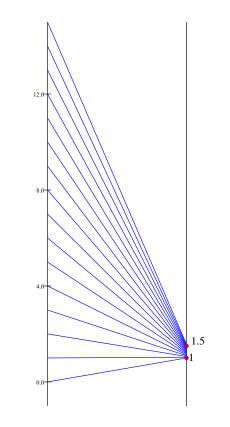
Solution:  $A(t) = 1000 e^{0.03t}$ . Find t where A(t) = 1500. Algebra: Find t where u=0.03t and 1.5 =  $e^{u}$ 

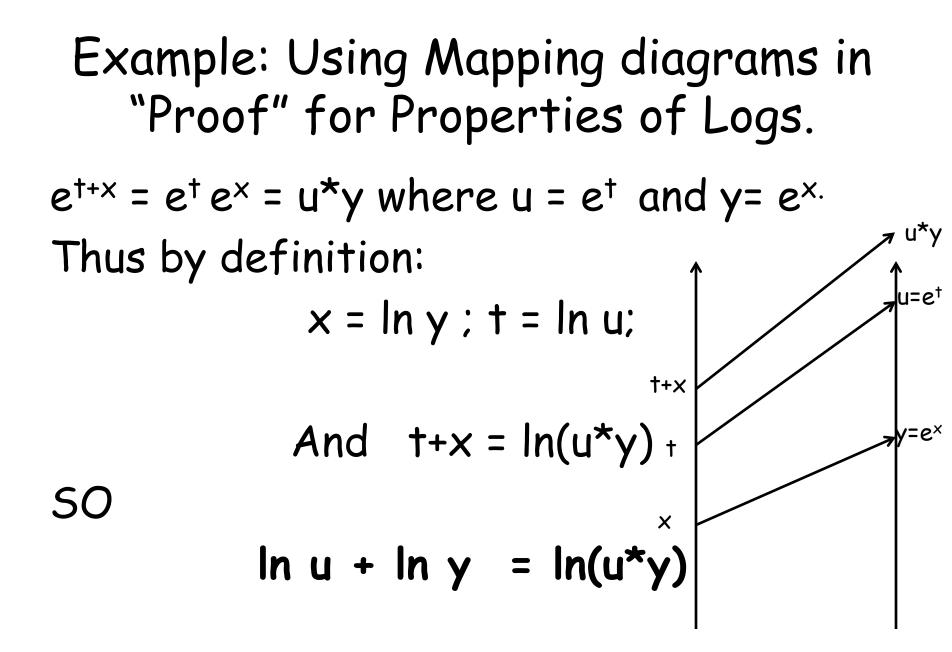
Consider simpler mapping diagram on next slide



# "Simple" Applications

- Solution: A(t) = 1000 e
- Find t where A(t) = 1500.
- Algebra: Find t where u=0.03t and 1.5 = e<sup>u</sup>.
- Consider simpler mapping diagram and solve with logarithm:
- u=0.03t = In(1.5) and
- $t = \ln(1.5)/0.03 \approx 13.52$



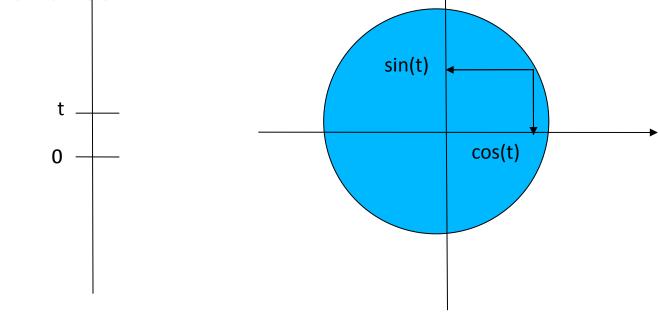


#### Session IV More on Mapping diagrams: Trigonometry and Calculus Connections

We complete our introduction to mapping diagrams by a consideration of trigonometric functions and some connections to calculus.

#### Seeing the functions on the unit circle with mapping diagram.

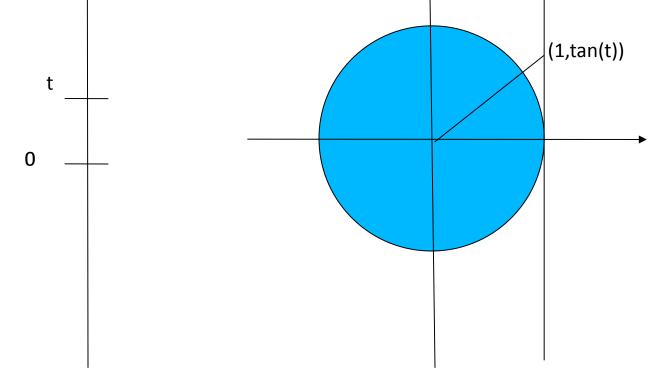
Sine and cosine of t measured on the vertical and horizontal axes.



Note the visualization of periodicity.

#### **Tangent Interpreted on Unit Circle**

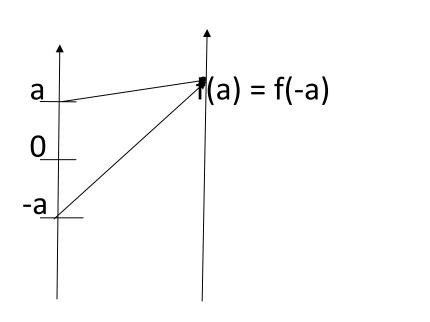
Tan(t) measured on the axis tangent to the unit circle.

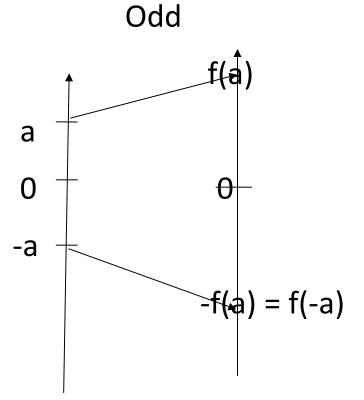


• Note the visualization of periodicity.

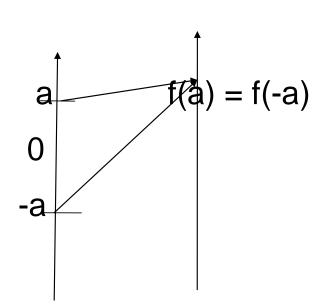
#### Even and odd on Mapping diagrams

Even

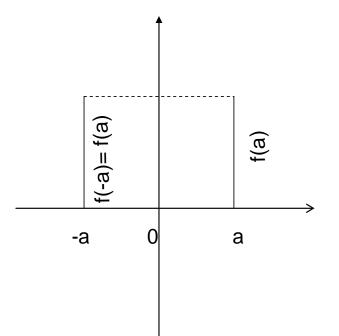




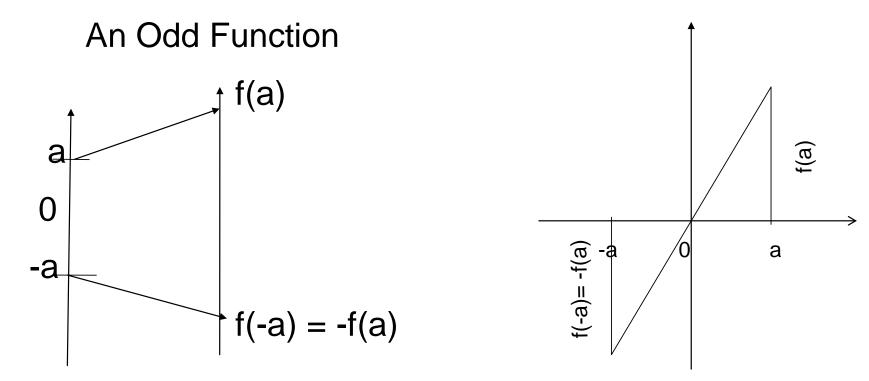
# Even Function Mapping Figures and Graphs

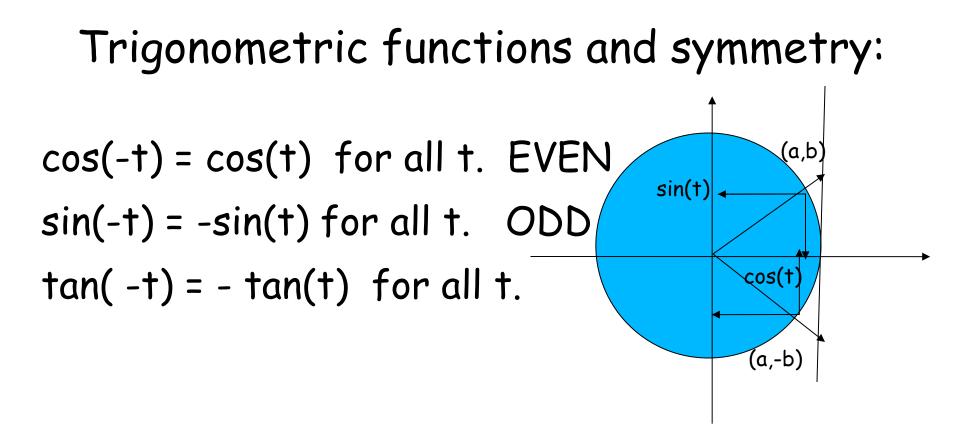


An Even Function



# Odd Function Mapping Figures and Graphs





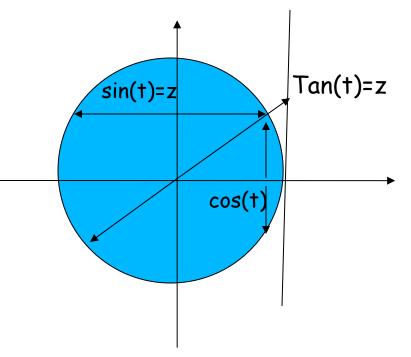
Justifications from unit circle mapping diagrams for sine, cosine and tangent.

### Trig Equations and Mapping diagrams

- To solve trig(x) = z.
- Find z on the target axis, then trace back on any and all arrows that "hit" z.
- Notice how this connects to periodic behavior of the trig functions and the issue of the number of solutions in an interval.
- This also connects to understanding the inverse trig functions.

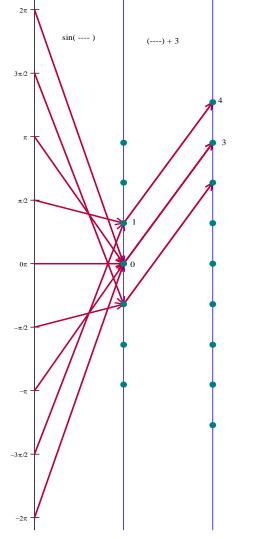
#### Solving Simple Trig Equations:

Solve trig(t)=z from unit circle mapping diagrams for sine, cosine and tangent.

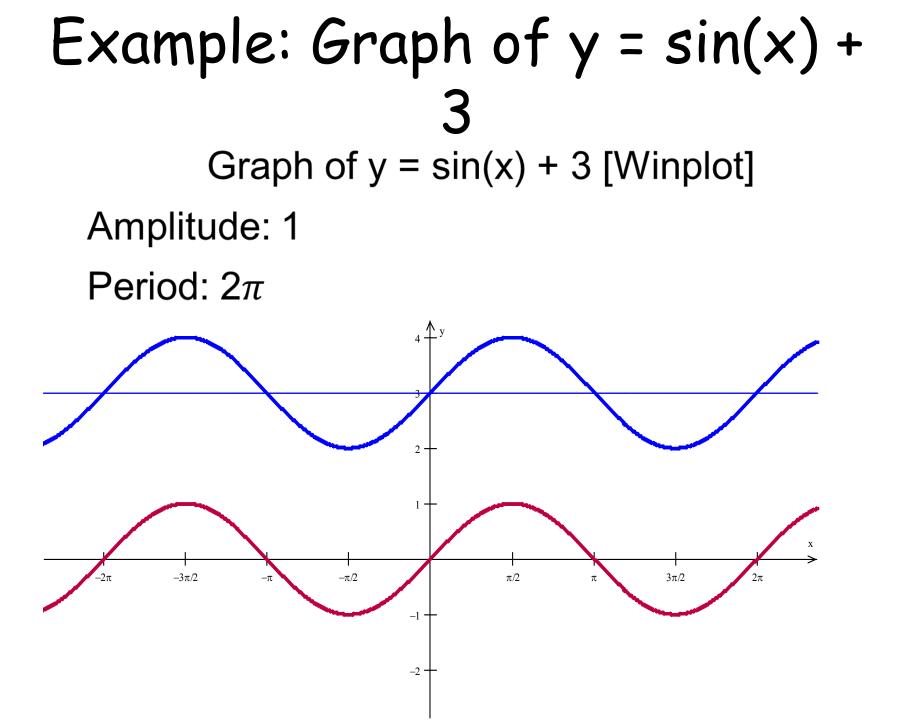


### Compositions with Trig Functions

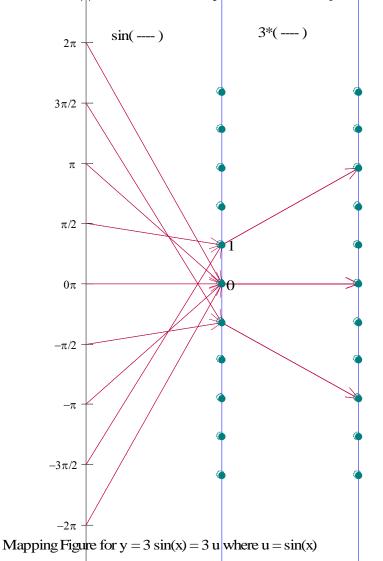
# Example: y = f(x) = sin(x) + 3



- Mapping diagram for
  - y =f(x) = sin(x) + 3 considered as a composition:
  - First: u = sin(x)
  - Second: y =u+3 so the result is
    - y = (sin(x)) + 3



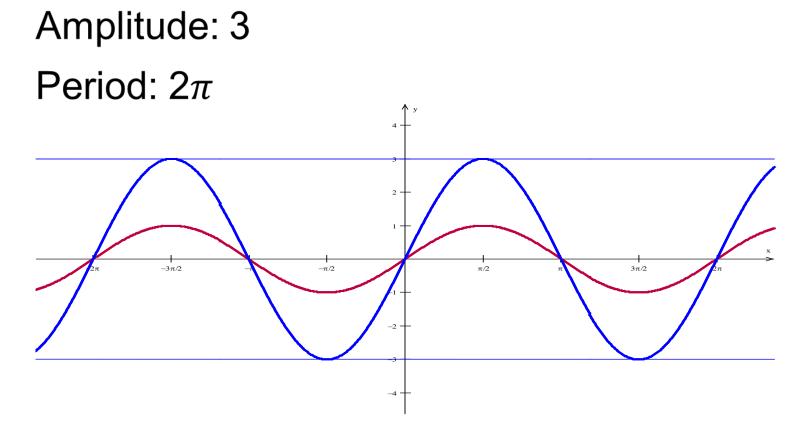
# Example: y = f(x) = 3 sin(x)



- Mapping diagram for
- y =f(x) = 3 sin(x) considered as a composition:
- First: u = sin(x)
- Second: y = 3u so
   the result is

# Example: Graph of y = 3 sin(x)

Graph of y = 3 sin(x) [Winplot]



### Interpretations

t -> (cos(t), sin(t)) -> (3cos(t),3sin(t))
unit circle magnified to circle of radius 3.

• 
$$Y = sin(x) + 3$$
:

+ -> (cos(t), sin(t)) -> (cos(t), sin(t)+3)
 unit circle shifted up to unit circle with center (0,3).
 Show with winplot: <u>circles\_sines.wp2</u>;

## Scale change before trig.

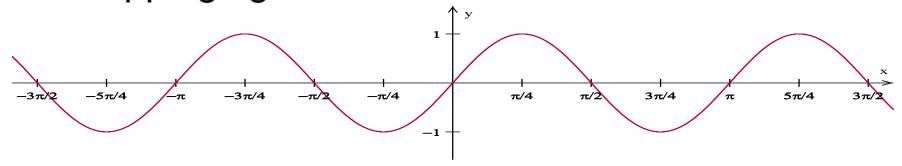
Mapping figures and graphs for f(x) = sin(Bx)

Amplitude and period

Connection to solving equations:

- Example: sin(2x) = 1;
  - $2x = \pi/2, 5\pi/2$
  - $x = \pi/4$ ,  $5\pi/4$
  - Difference is period:  $(5\pi \pi)/4 = \pi$ .

Scale change before trig. Mapping figures and graphs for f(x) = sin(2x)Amplitude:1 Period:  $\pi$ Use Excel here to demonstrate composition and a mapping figure.



Interpretations of these functions with circles.

Show with winplot: dot\_races.wp2 on Moodle:Dot races! (winplot)

Period for Y = sin(Bx):  $2\pi/B$ 

### Scale change before trig

Mapping figures and graphs for f(x) = sin(x+D) or

– Amplitude and period and shift.

Connection to solving equations:

- Example:  $sin(x + \pi/3) = 0$ ;
  - $x + \pi/3 = 0$
  - $x = -\pi/3$

Shift of sine curve to start at  $x = -\pi/3$  :  $(-\pi/3,0)$ 

• Interpretations of these functions with circles.

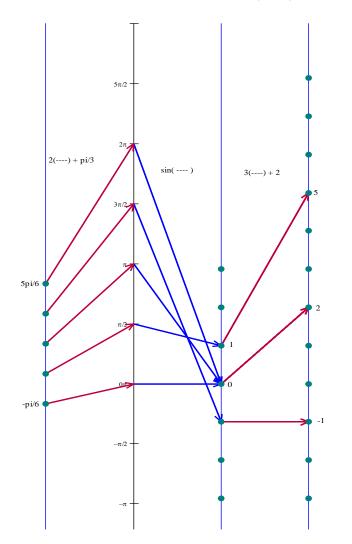
## Altogether!

- $f(x) = 3 \sin(2x + \pi/3) + 2$
- Mapping figure: Before  $u = 2x + \pi/3$

After y = 3z + 2

- MIDDLE: z = sin(u).
- Amplitude :3, period:  $\pi$  , and shift: ???.
- Visualize on circle. Dot races and mapping figures.
- Solve equations for period and shift.
- u = 0 and  $u = 2\pi$ . Period = difference in x.

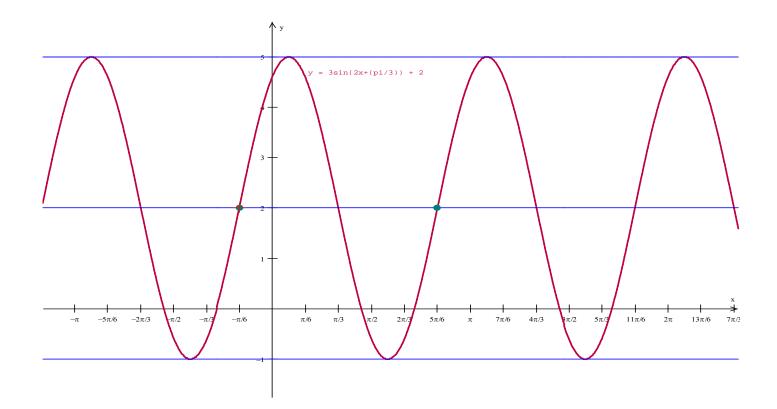
### <u>Mapping diagram</u>



f(x) =  $3 \sin(2x+\pi/3) + 2$ Mapping figure: Before u =  $2x+\pi/3$ After y = 3z + 2MIDDLE: z = sin(u).

### Graph

•  $f(x) = 3 \sin(2x + \pi/3) + 2$ 



# Thanks The End!

#### **Questions?**

### <u>flashman@humboldt.edu</u> http://www.humboldt.edu/~mef2

#### References

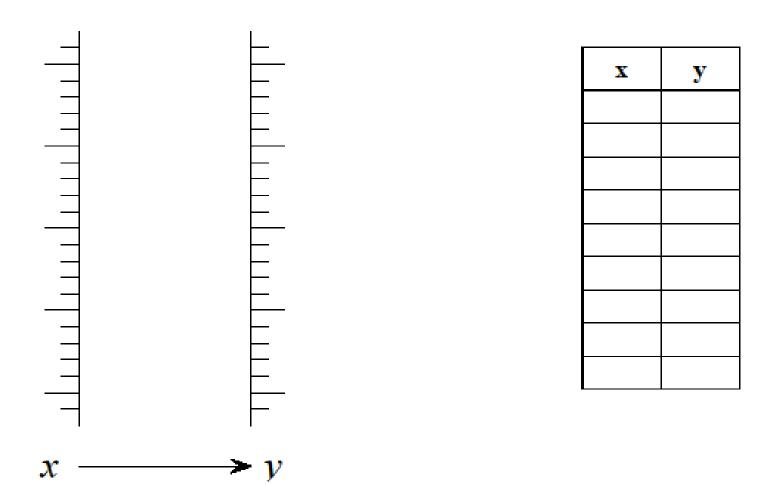
#### Mapping Diagrams and Functions

- <u>SparkNotes > Math Study Guides > Algebra II:</u> <u>Functions</u> Traditional treatment.
  - <u>http://www.sparknotes.com/math/algebra2/functions/</u>
- <u>Function Diagrams.</u> by Henri Picciotto Excellent Resources!
  - Henri Picciotto's Math Education Page
  - Some rights reserved
- Flashman, Yanosko, Kim https://www.math.duke.edu//education/prep02/tea ms/prep-12/

#### Function Diagrams by Henri Picciotto

#### Function Diagrams

Henri Picciotto, www.picciotto.org/math-ed



### More References

 Goldenberg, Paul, Philip Lewis, and James O'Keefe. "Dynamic Representation and the **Development of a Process Understanding of** Function." In The Concept of Function: Aspects of Epistemology and Pedagogy, edited by Ed Dubinsky and Guershon Harel, pp. 235– 60. MAA Notes no. 25. Washington, D.C.: Mathematical Association of America, 1992.

#### More References

- <u>http://www.geogebra.org/forum/viewtopic.php?f=2</u> &t=22592&sd=d&start=15
- <u>"Dynagraphs}--helping students visualize function</u> <u>dependency</u>
   <u>dependency</u>
   <u>GeoGebra User Forum</u>
- "degenerated" dynagraph game ("x" and "y" axes are superimposed) in GeoGebra: <u>http://www.uff.br/cdme/c1d/c1d-html/c1d-en.html</u>

# Thanks The End! REALLY!



#### flashman@humboldt.edu http://www.humboldt.edu/~mef2

### Abstract

- This webinar will present an introduction to mapping diagrams and their use for understanding functions.
  - demonstrate the use of mapping diagrams in conjunction with tables and graphs
  - illustrate the function concepts of composition and inverse.
  - Use worksheets and interactive on-line apps (using GeoGebra)
  - experience some of the ways these diagrams can make function concepts more dynamic.
- Participants will be asked to suggest ways that the diagrams can assist students in understanding function concepts.