Using Mapping Diagrams to Understand Functions AMATYC Webinar October 15, 2013 Martin Flashman

> Professor of Mathematics Humboldt State University <u>flashman@humboldt.edu</u> http://users.humboldt.edu/flashman

Background Questions

- Hands Up or Down...
 - 1. Are you familiar with Mapping Diagrams?
 - 2. Have you used Mapping Diagrams to teach functions?
 - 3. Have you used Mapping Diagrams to teach content besides function definitions?

Mapping Diagrams

A.k.a. Function Diagrams Dynagraphs

Preface: Quadratic Example Will be reviewed at end. ③

- *g*(*x*) = 2 (*x*-1)² + 3 Steps for *g*: 1. Linear:
 - Subtract 1.
- 2. Square result.
- 3. Linear: Multiply by 2 then add 3.

Written by Howard Swann and John Johnson

A fun source for visualizing functions with mapping diagrams at an elementary level.

Original version Part 1 (1971) Part 2 and Combined (1975) This is copyrighted material!

YOUR FRIENDLY NEIGHBORHOOD FUNCTION CONSISTS OF TWO SETS AND A BUNCH OF ARROWS THAT OBEY

THE ARROWS ALWAYS START FROM RULE THE SAME SET, CALLED THE DOMAIN AND GO TO THE OTHER SET, CALLED THE RANGE.

EVERYTHING IN THE DOMAIN-RULE SET MUST HAVE EXACTLY ONE ARROW FROM IT, EVERYTHING IN THE RANGE-SET MUST HAVE AT LEAST ONE ARROW TO IT. (IT'S OK TO HAVE 2 ARROWS TO 1 THING .)

So two or more arrows can hit the same thing in the range-set, but only one arrow can come from any particular thing in the domain-set.

Using arrows in the RULES unfortunately has its drawbacks -as functions become more elaborate, the arrows can get pretty difficult to follow

more arrows than we have shown and thus more dots. In fact, usually there are so many that the dots make a solid curve. Showing how such a function works using just arrows from the domain-set to the range-set would really be a problem.

Remember that the DOMAIN of any function is always part of the horizontal \longleftrightarrow line, called the "x-axis" because any arbitrarily chosen thing in the domain-set is usually called "x." The RANGE is always part of the vertical (1) line, called the "y - axis " because an arbitrary thing in the range-set is usually

Figure from Ch. 5 *Calculus* by M. Spivak

(a) f(x) = c

FIGURE 2

Main Resource for Remainder of Webinar

- Mapping Diagrams from A (algebra) to C(alculus) and D(ifferential) E(quation)s. A Reference and Resource Book on Function Visualizations Using Mapping Diagrams (Preliminary Sections- NOT YET FOR publication)
- <u>http://users.humboldt.edu/flashman/MD/section-1.1VF.html</u>

Linear Mapping diagrams

We begin our more detailed introduction to mapping diagrams by a consideration of linear functions :

Download and try the worksheet now: Worksheet.VF1.pdf.

Thumbs up when you are ready to proceed.

Visualizing Linear Functions

- Linear functions are both necessary, and understandable- even without considering their graphs.
- There is a sensible way to visualize them using "mapping diagrams."
- Examples of <u>important function features (like</u> <u>slope and intercepts)</u> can be illustrated with mapping diagrams.
- Activities for students engage understanding both function and linearity concepts.
- Mapping diagrams use simple straight edges as well as technology GeoGebra and SAGE.

Linear Functions: Tables

×	5 x - 7
3	
2	
1	
0	
-1	
-2	
-3	

Complete the table. x = 3,2,1,0,-1,-2,-3 f(x) = 5x - 7

For which x is f(x) > 0?

Linear Functions: Tables

X	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22

Complete the table. x = 3,2,1,0,-1,-2,-3 f(x) = 5x - 7

For which x is f(x) > 0?

Linear Functions: On Graph

Plot Points (x, 5x - 7):

×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22

Linear Functions: On Graph

Connect Points $(x 5x - 7)^{1}$

(X, JX = 7)	
×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22
0 -1 -2	-7 -12 -17

Linear Functions: On Graph

Connect the Points

×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22

Linear Functions: Mapping diagrams What happens before the graph.

 Connect point x to point 5x - 7 on axes

×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22

Linear Functions: Mapping diagrams What happens before the graph.

×	5 x - 7
3	8
2	3
1	-2
0	-7
-1	-12
-2	-17
-3	-22

Examples on Excel / Geogebra / SAGE

- Excel example
- Geogebra example
- SAGE example

Download and do worksheet problem #2: <u>Worksheet.LF.pdf.</u>

Thumbs up when you are ready to proceed.

Simple Examples are important!

- f(x) = x + C Added value: C
- f(x) = mx Scalar Multiple: m
 Interpretations of m:
 - -slope
 - -rate
 - Magnification factor
 - -m > 0 : Increasing function
 - m = 0 : Constant function [WS Example]
 - m < 0 : Decreasing function [WS Example]</pre>

Simple Examples are important! f(x) = mx + b with a mapping diagram --Five examples:

- Example 1: m = -2; b = 1: f(x) = -2x + 1
- Example 2: m = 2; b = 1: f(x) = 2x + 1
- Example 3: $m = \frac{1}{2}$; b = 1: $f(x) = \frac{1}{2}x + 1$
- Example 4: m = 0; b = 1: f(x) = 0 x + 1
- Example 5: m = 1; b = 1: f(x) = x + 1

Which diagram(s) have crossing arrows?

Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

Example 1:
$$m = -2$$
; $b = 1$
f (x) = -2x + 1

- Each arrow passes through a single point, which is labeled F = [- 2,1].
 - $\Box \text{ The point } \mathbf{F} \text{ completely determines the function } f.$
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through
 F
 - meeting the target line at a unique point / number, -2x + 1,
 - which corresponds to the linear function's value for the point/number, x.

Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

Example 2:
$$m = 2$$
; $b = 1$
f(x) = 2x + 1

Each arrow passes through a single point, which is labeled

F = [2,1].

- $\Box \text{ The point } \mathbf{F} \text{ completely determines} \\ \text{the function } f.$
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through
 F
 - meeting the target line at a unique point / number, 2x + 1,
 - which corresponds to the linear function's value for the point/number, x.

Visualizing f(x) = mx + b with a mapping diagram -- Five examples:

- Example 3: m = 1/2; b = 1 f(x) = ½ x + 1
- Each arrow passes through a single point, which is labeled F = [1/2,1].
 - $\Box \text{ The point } \mathbf{F} \text{ completely determines the function } f.$
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through F
 - meeting the target line at a unique point / number, ½ x + 1,

which corresponds to the linear function's value for the point/number, x.

Visualizing f(x) = mx + b with a mapping diagram -- Five examples: Example 4: m = 0; b = 1 f(x) = 0 x + 1

- Each arrow passes through a single point, which is labeled F = [0,1].
 - \Box The point **F** completely determines the function *f*.
 - given a point / number, x, on the source line,
 - there is a unique arrow passing through F
 - meeting the target line at a unique point / number, f(x)=1,
 - which corresponds to the linear function's value for the point/number, x.

Visualizing f(x) = mx + b with a mapping diagram -- Five examples Example 5: m = 1; b = 1f(x) = x + 1

- Unlike the previous examples, in this case it is not a single point that determines the mapping diagram, but the single arrow from 0 to 1, which we designate as F[1,1]
- It can also be shown that this single arrow completely determines the function. Thus, given a point / number, x, on the source line, there is a unique arrow passing through x parallel to F[1,1] meeting the target line a unique point / number, x + 1, which corresponds to the linear function's value for the point/number, x.
 - The single arrow completely determines the function *f*.
 - given a point / number, x, on the source line,
 - there is a unique arrow through x parallel to F[1,1]
 - meeting the target line at a unique point / number, x + 1,

which corresponds to the linear function's value for the point/number, x.

Function-Equation Questions with linear focus points

- Solve a linear equations:
 - 2x+1 = 5
 - 2x+1 = -x + 2
 - Use focus to find x.

"fixed points" : f(x) = x
Use focus to find x.

More on Linear Mapping diagrams

We continue our introduction to mapping diagrams by a consideration of the <u>composition of linear functions.</u>

Compositions are keys!

An example of composition with mapping diagrams of simpler (linear) functions.

2.0-

1.0-

0.0

-1.0-

-2.0-

-3.0

$$-g(x) = 2x; h(u)=u+1$$

$$-f(x) = h(g(x)) = h(u)$$

where u =g(x) = 2x

$$-f(x) = (2x) + 1 = 2x + 1$$

$$f(0) = 1 \text{ slope} = 2$$

Compositions are keys!

Linear Functions can be understood and visualized as compositions with mapping diagrams of simpler linear functions.

$$-f(x) = 2 x + 1 = (2x) + 1$$

Compositions are keys!

Linear Functions can be understood and visualized as compositions with mapping diagrams of simpler linear functions.

Example: f(x) = 2(x-1) + 3 g(x)=x-1 h(u)=2u; k(t)=t+3• f(1)=3 slope = 2

Question for Thought

- For which functions would mapping diagrams add to the understanding of composition?
- In what other contexts are composition with "x+h" relevant for understanding function identities?
- In what other contexts are composition with "-x" relevant for understanding function identities?

Inverses, Equations and Mapping diagrams

- Inverse: If f(x) = y then invf(y)=x.
- So to find invf(b) we need to find any and all x that solve the equation f(x) = b.
- How is this visualized on a mapping diagram?
- Find b on the target axis, then trace back on any and all arrows that "hit"b.
Mapping diagrams and Inverse linear functions:

- Use transparency for mapping diagrams-- Copy mapping diagram of f to transparency.
 - Flip the transparency to see mapping diagram of inverse function g. ("before or after") invg(g(a)) = a; g(invg(b)) = b;
- Example i: g(x) = 2x; invg(x) = 1/2x
- Example ii: h(x) = x + 1 ; invh(x) = x 1

-3.0

Mapping diagrams and Inverses

Inverse linear functions:

socks and shoes with mapping diagrams

2.0-

1.0-

g(x) = 2x; invf(x) = 1/2 x

•
$$h(x) = x + 1$$
; $invh(x) = x - 1$

•
$$f(x) = 2 x + 1 = (2x) + 1$$

- $g(x) = 2x; h(u)=u+1$
- inverse of f: $invf(x)=invh(invg(x))=1/2^{o}(x-1)$

Mapping diagrams and Inverses

Inverse linear functions:

- "socks and shoes" with mapping diagrams
- f(x) = 2(x-1) + 3:
 g(x)=x-1 h(u)=2u; k(t)=t+3
 Inverse of f: 1/2(x-3) +1

Question for Thought

- For which functions would mapping diagrams add to the understanding of inverse functions?
- How does "socks and shoes" connect with solving equations and justifying identities?

Closer: Quadratic Example From Preface. ③

3. Linear: Multiply by 2 then add 3.

Thanks The End!

Questions?

<u>flashman@humboldt.edu</u> http://www.humboldt.edu/~mef2

References

Mapping Diagrams and Functions

- <u>SparkNotes > Math Study Guides > Algebra II:</u> <u>Functions</u> Traditional treatment.
 - <u>http://www.sparknotes.com/math/algebra2/functions/</u>
- <u>Function Diagrams.</u> by Henri Picciotto Excellent Resources!
 - Henri Picciotto's Math Education Page
 - Some rights reserved
- Flashman, Yanosko, Kim https://www.math.duke.edu//education/prep02/tea ms/prep-12/

Function Diagrams by Henri Picciotto

Function Diagrams

Henri Picciotto, www.picciotto.org/math-ed

Function Diagrams

Henri Picciotto, www.picciotto.org/math-ed

More References

 Goldenberg, Paul, Philip Lewis, and James O'Keefe. "Dynamic Representation and the **Development of a Process Understanding of** Function." In The Concept of Function: Aspects of Epistemology and Pedagogy, edited by Ed Dubinsky and Guershon Harel, pp. 235– 60. MAA Notes no. 25. Washington, D.C.: Mathematical Association of America, 1992.

More References

- <u>http://www.geogebra.org/forum/viewtopic.php?f=2</u> &t=22592&sd=d&start=15
- <u>"Dynagraphs}--helping students visualize function</u> <u>dependency</u>
 <u>dependency</u>
 <u>GeoGebra User Forum</u>
- "degenerated" dynagraph game ("x" and "y" axes are superimposed) in GeoGebra: <u>http://www.uff.br/cdme/c1d/c1d-html/c1d-en.html</u>

Think about These Problems

- **M.1** How would you use the Linear Focus to **find the mapping diagram for the function inverse for a linear function when m≠0**?
- M.2 How does the choice of axis scales affect the position of the linear function focus point and its use in solving equations?
- M.3 Describe the visual features of the mapping diagram for the quadratic function $f(x) = x^2$. How does this generalize for *even* functions where f(-x) = f(x)?
- M.4 Describe the visual features of the mapping diagram for the cubic function $f(x) = x^3$. How does this generalize for *odd* functions where f(-x) = -f(x)?

MoreThink about These Problems

- L.1 Describe the visual features of the mapping diagram for the quadratic function $f(x) = x^2$. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- **L.2 Describe the visual features of the mapping diagram for the quadratic function** $f(x) = A(x-h)^2 + k$ using composition with simple linear functions. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.3 Describe the visual features of a mapping diagram for the square root function $g(x) = \sqrt{x}$ and relate them to those of the quadratic $f(x) = x^2$. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.4 Describe the visual features of the mapping diagram for the reciprocal function f(x) = 1/x. Domain? Range? "Asymptotes" and "infinity"? Function Inverse?
- L.5 Describe the visual features of the mapping diagram for the linear fractional function f(x) = A/(x-h) + k using composition with simple linear functions. Domain? Range? "Asymptotes" and "infinity"? Function Inverse?

