This page now requires Internet Explorer 6+MathPlayer or Mozilla/Firefox/Netscape 7+.
  Exercises IX.C: Solutions (In Part)

In exercises 1-10, find Pn(x,f(x)) for the specified function and n.

  1. f(x)=xsin(x); n=6

    P5(x,sin(x))=x-x36+x55!, so  P6(x,xsin(x))=xP5(x,sin(x))=x(x-x36+x55!)=x2-x46+x65!.
  2. f(x)=x2cos(x); n=6
  3. f(x)=xsin(x)+cos(x); n=6
    P6(x,cos(x))=1-x22+x44!-x66!
    So P6(x,xsin(x)+cos(x))=P6(x,xsin(x))+P6(x,cos(x))=x2-x46+x65!+1-x22+x44!-x66!=...
  4. f(x)=xex; n=6
  5. f(x)=sin(x3); n=9
    P9(x,sin(x3))=P3(x3,sin(x))=(x3)-(x3)36=x3 -x96
  6. f(x)=12-x; n=4
  7. f(x)=11+x; n=4
  8. f(x)=11+x2; n=8
  9. f(x)=arctan(x); n=8
    Hint: Use arctan'(x)=11+x2 and the previous problem.
  10. f(x)=x2-x; n=4
  11. f(x)=e-2x ; n=4
12-22: For the functions f in problems 1-11 use the MacLaurin polynomial to estimate 01f(x)dx.