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In this section we will develop applications of the second derivative that explain more
graphical features of functions. These features are described geometrically by the terms concavity
or in some contexts convexity.  Using the motion interpretation the second derivative can be
understood as acceleration. The second derivative also provides another tool for the study of
extrema. It gives a quick, though not always effective, test for local extremes at critical points.

As we proceed through this section,  keep in mind the interpretation of the second derivative
as the rate of change of the first derivative values.

Position: The second derivative may be
interpreted as the rate of change of velocity
(i.e., acceleration) in the motion
interpretation.

Graph: The second derivative may be
interpreted graphically as the rate of change
of the tangent line slopes. 

Economics: The second derivative of
production related measurements like costs,
revenues, and profits, gives the rate of change
of the corresponding  marginal rates as
production levels change.

Probability: The second derivative of the
distribution function determined by a
continuous random variable gives the rate of
change of the point density function values as
the value of the random variable changes.

The second derivative, acceleration, mapping figures, and graphs. We will use the motion
interpretation of a function to analyze the function's second derivative in relation to its graph and
mapping figure. 

                                                                                  

The Baton Pass: Consider two runners, Fred and Ginger, in a relay race on
a straight coordinate line about to pass a baton. Fred is the runner who has the
baton and Ginger will receive the baton. [Insert Photo of Fred and Ginger
passing baton] 

Let f (t) denote Fred's location at time t using the function f, while g(t) will
denote Ginger's location at the same time. To pass the baton smoothly, Fred and
Ginger want to be at the same position and traveling at the same velocity at
time t = a . 

So, for a smooth baton pass at time a, Fred and Ginger want f (a) = g(a) and
f  '(a) = g '(a). 

After the baton is passed, Ginger will accelerate, i.e., g''(t) > 0 for t > a,
while Fred will continue to run at the same velocity, i.e., f '(t) = f '(a) for t > a. It
should make sense that Ginger's coordinate will increase faster than Fred's after
the pass, so that for t > a, g(t) >f (t). 

Representing Fred and Ginger’s positions in mapping  Figure 1 illustrates
their relative situations at times  b, c and d after t = a. 
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Looking at the graphs for the same scenario, we see the two function as
curves. Since Fred's velocity is constant for t > a, the graph of f (t) for t > a is
in fact  a line.  Ginger is accelerating, i.e., g''(t) > 0 for t > a, so the graph of g
is above the graph of f for t > a.  Because f (a) = g(a) and f  '(a) = g '(a), the
graph of  f  is the tangent to the graph of g at (a, g(a)) . See Figure 2. 

Conclusion: For t > a, the graph of the function g lies above the line
tangent to the graph of g at the point (a, g(a)). 

Similar reasoning  can be used to see that when g''(t) > 0 for t < a , the
graph of g(x) is above the line tangent to the graph of g at (a, g(a)). Thus, if
g''(t) > 0 for all t in an interval containing a, the graph of g lies above the
tangent line at (a, g(a)). 

We'll continue this discussion after we introduce some of the key ideas
related to the geometric concept of concavity. 

 

START HERE Geometry, concavity, and convexity. The
words concavity and convexity have a long history of use in
science as well as in mathematics  –  going back as far as
Archimedes (ca. 287 - ca. 212 BCE)  –  to describe shapes of
curves, planar regions, surfaces, and solids. There are many ways to
characterize these features, two of which we will illustrate before
adopting one as the definition for our discussion. 

Let's use C to denote the graph of f (x)= x  and D for g(x) = -x .2  2

See Figure 3. To avoid confusion on the terminology between
concave and convex, we will describe shapes similar to C as
concave up and those similar to D as concave down.    

Concave Up. 1. Choose any two points P and Q on C and draw
the line segment PQ between them. After doing this several times
our first characterization for curves that are concave up should
make sense. For a curve that is concave up, a line segment
between any two points on the curve will lie above the curve.
See Figure 4. This gives a simple test to show that a curve is not
concave up. You need only find a line segment between two
points on the curve that does not lie above the curve (as in
Figure 5 ).  It is more difficult to show this property is satisfied for
a curve because it must be satisfied by every line segment between
any pairs of points on the curve.  

Concave Down. 1. Treating the curve D to the same analysis
that C received gives a comparable description of concave down. 
Thus any line segment between two points on a curve that is
concave down will lie below the curve. See Figure 6.
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Concave Up. 2.  A second way to characterize curves that are
concave up uses tangent lines.  Draw several tangent lines to C. See
Figure 7. Each of these lines lies below C.  This then is the second
geometric quality that characterizes a curve that is concave up,
-namely: in a vicinity of any point the tangent line to the curve at
the point lies below the curve.  

NOTES- A. The characterization using the tangent line allows
us to consider a curve concave up at one point. Testing for this
property at a point is organized easily with the geometry. You need
to find the tangent line at the point and then recognize its position
relative to the curve. This is precisely the information we noticed
when we analyzed Fred and Ginger's motion. 

B. Having drawn several tangents to the
curve C brings to light another aspect of
concavity .  As the points progress from left
to right on the curve the slopes of the tangent
lines get larger. This rather simple
observation turns out to provide another key 
for a practical test for concavity: Examine
the first derivative of a function defining
the curve to see on what intervals the
derivative is increasing. 

Since the geometrical interpretation of
the derivative is that it gives the slope of
the tangent line, an increasing derivative
can be interpreted as increasing slopes for
the tangent lines. One way to discover how
the first derivative is behaving  is to do first
derivative analysis on the first derivative.
So if the derivative of the first derivative,
i.e. the second derivative, is positive on the
interval, then the first derivative values are increasing on the interval.

Concave Down. 2. Treating the curve D to the same analysis that C received gives a
comparable description of concave down using the tangent lines.  Thus the tangent lines for a
curve that is concave down for an interval will lie above the curve .  Furthermore in this
case the tangent line slopes will be decreasing, which is guaranteed if the second derivative
is negative for the interval.

We now give a  geometric definition of concavity which will allow us to formulate in more 
precise language the geometric results of our analysis of the second derivative.

 From Archimedes, On the Sphere and

Cylinder,

DEFINITIONS. 

1. There are in a plane certain terminated

bent lines, which either lie wholly on the same

side of the straight lines joining their

extremities, or have no part of them on the

other side. 

2. I apply the term concave in the same

direction to a line such that, if any two points

on it are taken, either all the straight lines

connecting the points fall on the same side of

the line, or some fall on one and the same side

while others fall on the line itself, but none on

the other side. 
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Definition: We say that the graph of a function f is concave up over an interval I if for
any a and b in I, and any x where x is between a and b, 

.  

Concave UP- The function's graph is below the secant line.

 We say that the graph of a function is concave down over an interval I if for any a and b
in I, and any x where x is between a and b, 

.  

Concave UP- The function's graph is below the secant line.

Though these definitions of concavity do not involve the concepts of tangent lines (or
derivatives), there is a connection to the calculus which we have already noted and which the
following results make explicit. The proofs of these results are contained in Appendix III.*** 

Theorem III.C.1: [A monotonic derivative is equivalent to Concave.] Suppose f is a
differentiable function on an open interval I .(P) f is concave up on I if and only if for any a and
b in I where a < b, f'(a) # f'(b).   (N) f is concave down on I if and only if for any a and b in I
where a < b, f'(a) $ f'(b).

Proof: See Appendix III.***. 
Theorem III.C.2:[Tangent Lines and Concavity]  Suppose g is differentiable on an open

interval I. 
(P) g is concave up if and only if for any point c in I and any point x in I,

 g(x) $  g(c) + (x-c) g'(c).
(N) f is concave down if and only if for any point c in I and any point x in I,

 g(x) #  g(c) + (x-c) g'(c).
Proof: See Appendix III.***. 

Note: Concavity, The Differential, and Estimations. The expression  g(c) + (x-c) g'(c)  is in
fact the differential estimate for g(x) at c using dx=x-c, i.e., dg(c,x-c)=(x-c) g'(c) so Theorem
III.C.2 says that if g is concave up at c then differential estimate of g(x) at c, namely, g(c)
+dg(x,x-c) will be an underestimate of the exact value of g(x). This is consistent with motion
interpretation thinking of Fred's position as the linear-differential estimating function while
Ginger's position can be considered as the function g which is increasing at increasing rates.

With these two theorems stated the analysis of concavity becomes relatively easy using the
second derivative as the next result shows.

Theorem III.C.3: Suppose f is a continuous function considered on an interval I. 
(P) If  f''(x)>0 for all x inside I then f is concave up over I. 

    (N) If f''(x) < 0 for all x inside I then f is concave down over I.
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Proof: (P) We suppose f''(x) > 0  for x inside I, so f'(x) is increasing on the interval I, i.e.,  if a
and b are in I and a<b then f'(a) < f'(b). Now Theorem III.C.2 can be applied and f is concave up
over I.

(N) This is done similarly and is left as an exercise for the reader.

Points of inflection: A point on the graph of the function which is the boundary between
intervals where the function's graph has different concavity is called a point of inflection. See
Figure III.C. ***. You can use the second derivative to  discover and confirm points of inflection 
of a function f when f'' is a continuous function. Find those points where f''(x) = 0. [These can be
described as the second order critical points for f in analogy with those points where f'(x)=0.] By
the intermediate value theorem applied to f'', these are the only points where f''(x) can change
from positive to negative or vice versa. Thus these are the only points where there can be a
change in concavity. Now check to see if there is a change in the sign of f''(x) by testing points to
the left and right of these points. If there is a change in sign, then you have found the first
coordinate of a point of inflection. 

Tangent lines and inflection. On one side of a point of inflection the analysis for positive
second derivative will apply while on the other side the analysis for negative second derivative
will apply. Therefore on one side of a point of inflection the tangent line will lie above the curve
while on the other side the tangent line will lie below the curve.  So at a point of inflection the
tangent line will cross the curve. This is one of the most visible features of this change in
concavity at the point of inflection. See Figure III.C*?

Interpretations of points of inflection: 1. Consider f as the position function for a moving
object. We can then interpret f'' as the acceleration of the object. A point c where f''(c) = 0 is a
time where the acceleration is 0, and thus is a critical point for f', the velocity. First derivative
analysis shows that if there is a change in sign of f'' at c, then we have a local extreme value for
the velocity at time c. Therefore a point of inflection can be interpreted as a point in time where
the velocity achieves a relative extreme value.

2. Suppose F is a probability distribution function for a continuous random variable X.  If
(c,F(c)) is a point of inflection for the graph of F, then c is an extreme value for F'(x) = f(x) , the
probability density function of X. Thus c is a possible mode for the random variable X.

Example III.C.1  Suppose f(x) = x  - 6x  + 2 . a) Find those intervals where the graph of f is 4  2

concave up and concave down. 
b) Find any points of inflection.
Solution: a) f'(x) = 4x  - 12x .  f''(x) = 12x  - 12. Solving for when f''(x) = 0 we have 0=12x - 3 2 2

12 so x = ±1. Using the continuity of f'', we can see that when x > 1 or when x<-1, f''(x)> 0, while
when -1< x < 1 , f''(x) < 0. Therefore by applying the theorem f is concave up on the intervals
(1,4) and (-4,-1), and concave down on the interval (-1,1). 
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f''(x)   ++++++++0-----------0++++++++ 
    

          )2))2))2))2))2))2))2))2))2))    
     

          -2    -1     0     1     2
f' is       incr. decreasing    incr.

Figure 8 Figure 9

x y=f(x)= x -6x +2 )y=f (x+.5)-f (x) f (x) f  '' (x)  4 2

3 29 25.4375 72 96

2.5 3.563 9.5625 32.5 63

2 -6 0.4375 8 36

1.5 -6.4375 -3.4375 -4.5 15

1 -3 -3.5625 -8 0

0.5 0.5625 -1.4375 -5.5 -9

0 2 1.4375 0 -12

-0.5 0.5625 3.5625 5.5 -9

-1 -3 3.4375 8 0

-1.5 -6.4375 -0.4375 4.5 15

-2 -6 ?? -8 36

Figure 10 Figure 11

b) From part a it is clear
that at x=1 and x=-1 there is a
change in the sign of f'' and
thus a change in concavity.
Since f(1)= f(-1) = -3 we have
(-1,-3) and (1,-3) are points of
inflection for f.

Comment: Though the
graphical approach to
interpreting the second
derivative is very valuable, it is
worth noting that the second
derivative can also be used to
understand the relative size in
the differences between the
function's values. As Table ***
demonstrates, the differences 
between values of f appear to
be locally smallest at x = 1 and locally largest at x=1. These function value differences when
divided by the change in x can be used to approximate the derivative. So we should not be too

surprised to find that the values of the
derivative in the same table show a similar
feature. The second derivative's values 
graphed in Figure *** also present
information consistent with the graph of f
'(x) as seen in Figure ***. That is, when f
''(x)>0, the function f' is increasing, and
when f  ''(x)<0 then the function f  ' is
decreasing.
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