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It is not the definition of the derivative alone that makes cal culus such awidely used tool for an
ever growing number of applications. Thefeature of the derivative that hasmadeit so powerful and
important is the ease with which it can be computed symbolically or numerically estimated. Based
on some key functions and some fairly simplerulesit is actually mechanical to find the derivatives
of elementary functions. These elementary functions are built up from the key algebraic and
transcendental functionswe have seenin Chapter 0 using basic arithmetic and the ability to compose
function upon function.

Inthissectionwewill lay thefoundationsfor the symbolic cal culusof derivativesby investigating
thederivativesof power functions, somekey trigonometricfunctions, namely thesineand cosine
functions, and simple exponential functions. We will also establish two important rules for
combiningfunctionsby addition and re-scaling function val uesby constant multiples. Theserules
will alow usto find derivatives for alarge class of functions, including all polynomia functions.
Wewill leave more complicated functions, such asthe logarithmic functions, and rulesfor dealing
with multiplication, division, and composition for later exploration in Chapter I1.

| .F.1a Derivatives of Powers of x.
We've now seen several examples of how to find the derivative of afunction. Two equivalent
formulas for the derivative of afunction f at a are the key for this work, namely,
e Im fx)-f(a)
A

and f(@)= 1, LEDT@,

Hereisabrief summary of someresultswe'veobtainedinour previouswork and exercisesinthis
chapter.

primitive function: derivative function:
f ()= f'(a)=
c 0
mx+b m
X2 2a
x3 3a?
% =x1 —é =(-Da”?
Vx =x5 2—\1/5 =5a%
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The last four of these can be generdized to the following:

Theorem |.F.1: (The Power or the" Down - One" Rule)
If f (x) =xP then f'(X) =px**taslongasx # 0when p-1<0.

This result can be written more compactly in either the Leibniz or the Operator notations as
follows:
dx?)
dx

=p Pl

D,(x7) = px”"

We will not provethistheorem at thisstagein al its generality. But we will prove aimost as
much using the techniques we have. Beginning with only positive integers for exponents we will
demonstratetheresult for all power functionsthat have rational number exponents.

Suggestion: If any of the following proofs becomes too
abstract for you to follow, substitute aspecific number forn /You might ask, "Why bother to justify this
(say n=5) and see how the algebraworksfor that number, | formula? Can't we just use it and accept that it

. . . . must be correct becauseit'swritten in the book?
It is generdlly not a good idea to continue reading an
argument for long without understanding the algebra being
used.

Proposition: |.F.2. (The Power or the
"Down-One" Rule for Positive Integers.)

For any positiveinteger, n, thatis, forn=1,
2,3 ..,

if f(x) =x"then f'(x) = nx"™.

é help you follow this argument, let's use n=5 and write b
comparable statements that will be used for the general case. The

numerator of the difference quotient is

x> -a’=(x - ax*+x3a+ x’a?

Thus we see that
S)-fa) _ x°-a®

+ xa’ + a®).

Proof: Notefirst that when n = 1 theresult

states that when f (x) = x, f'(X)=1x** = x°= 1. PEP—
A quick look at the difference quotient _ G-a)*+xla+x?at+xa’ vat)
here, Z—2 =1, and a thought about the x-a

x-a = x*+x3a+x%a?+xa®+a*

velocity interpretation of f that says that an

object moving with itsposition determined by | Now it'stime to think about this difference quotient as X ~ @ It has
this function should help make this clear. exactly 5 summands and each of these approaches a* as x~a. So the

foerence quotient approaches 5a%, and therefore f/(a)=5a*. /
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When n = 2, the result says that when f (x) = x2, then f/(x) = 2x2 ! = 2x! = 2x.

Also whenn =3, f (X)=x3, then f'(X)=3x2. The calculations and analysis for these results were
madein Chapter |.A using thetangent lineinterpretation of thederivativefor motivation. Well prove
the general result now using the definition of the derivative from Chapter 1.D,

flay- I fOS@

x> a  x-a

As in the previous section we'll employ the four step method with algebra comparable to that

used for x* and x3 to simplify and analyze the difference quotient fx)fa) :
xX—a

Step 1: For n>1
f(x) = x"and
- f(a) =a"
Step 2: f(x)-f(a =x"-a"=(x-a)(x" +x
Step3: flx) - fla) _x"-a”
X -a x-a
_ (x-a)(x" t+x

"2g+..xa" 2 +a" ).

" 2g+..+xa" 2 +a" )

X —-a
= (" l+x"2g+. +xra" 2 +a™ ).

Step 4: Think! Now it'stimeto think about thisdifference quotient asx - a. Theexpression for
the quotient has exactly n summands and each of these approaches a"* as x ~a. So the difference
quotient approaches na™, and therefore f'(a) = n a™!.

In summary, we'll write the four steps of of this analysisin one long run-on equation.

flay = M f®) - fla) (Definition.)
> a x-a
lim x” - a”

= - (Function evaluation.)
> a x-a

: —Nel(vP 11472, on-2, n-1
_ lim (x-a)G" +x" "a+..+xa""+a"") (Aigebra)
x> a x-a
= xlima " lx"2q+.. +xa"2+a" ) (Algebra.)
fla) = na™ . (Thinking - analysis.)

Asusual, in the last equation wereplace "a" by "x" to obtain the result claimed by the theorem's

statement, f '(x) = nx .
E.O.P.

Remarks: 1. This proposition allows usto find the derivative for f (x)=x® without difficulty by
bringing the exponent "86" down in front of the variable x and reducing the exponent by oneto
"85", so that f '(X) = 86x®. This helps explain why | call thisthe "down-one" rule. [Actualy this
ishow my first calculus teacher described the rule to me.]

In Leibniz and operator notations this work would be written as follows:
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%(xss) = 86:x86°1 = 86:x%

D (x 86) = 86-x36! = 86:x%.

2. The tangent line interpretation of the derivative helps make some sense of this
result by considering the shape of the graphs of power functions of the type x". See '
Figures*** and ***. When nisodd (like 5), n-1 ( which would be 4) is even, so the
derivative nx™* will never be negative. The tangent lines to these graphs would all
appear to have non negative slopes. When niseven (like 4), n-1 (which would be 3)
is odd so the derivative nx™* will be positive when x is positive and negative when x
isnegative. The tangent lines to these graphs would all appear to have positive slopes
for the curveto theright of the Y -axis while their slopes would be negative to the | eft
of theY -axis.. Noticea so that the X-axis, which hasaslope of 0, appearsto be tangent
to these curves at the origin.

Figurel
Odd powers of x

We generalize thisresult first to negative integer sin the next proposition, stated in a
form that recognizes that a negative integer is the opposite of a positive integer.

Proposition: |.F.3. (The Power or the "Down One" Rule for Negative Integers.) Figure?2
For n apositive integer, if fix) =x ™ = L [x£0], then f/(x) = -mx "' = -, Even powers of X
xn

xn+1

Notice the proposition expressesthe
rule using the fact that a negative
integer is the opposite of a positive
integer. We do this to help avoid
some confusion with notation.

Proof: Here again we usethefour step analysisalong with some algebra
to make the argument easier to follow.

Step 1: For n>1

f(x) =x"and
- f(@ =a"
Step2  fM)-f(@ =xn"-gn-L-1 _ a=x"_ x"a”
x" g xPqh xMaq”

Inserting thisinto the difference quotient for f and re-using some of the algebrafrom thelast proof
we arrive at
Step 31 flx) - fla) _x"-a™
X —a xX—a
~(x"-a")
x"a™x - a)
_(xn—1+xn—2,

a+..+xa"?+a" 1)

x"a®”
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Step 4: Think! So now it'stimeto think again aswe anayzethisdifferencequotient asx-a. The
thinking should be familiar since the numerator is certainly approaching - na "~ * while the

denominator is approaching a 2.

_ n-1

Thus the quotient is approaching na2 = -na™!, 0 fl(a) = -na™"' = -
a n

n

an+1 )

EOP
Remarks: 1.Using this proposition we seethat if f (x) = 1/x® = x %, then the derivativeisfound
simply by bringing the exponent "-86" down in front of the variable x and reducing the exponent
by oneto "-87", sothat f'(X)=-86x®" =-86/x?". Again using Leibniz or operator notation for this
exampl e the work would be written as follows:

i(i) = i(x _86) = —86°x _86_1 = —86°x _87 = __86

de 86 dx 87

D(-L) = Dx%) = -86x %1 = _g6x¥7- 50
* x86 x x87

2. Thetangent line interpretation of the derivative can also help make sense of thisresult. Using
some graphing technology you might graph x "for n=1, 2, 3, and 4 to see for yourself how the
derivative information is consistent with the apparent slopes of tangent lines to these graphs.

Fractional Exponents: Once morewe generaize the power rule, thistimefor functionsthat use
fractional exponents of the form 1 where n is a positive integer.
n

Proposition: I.F.4. (The Power or the "Down One" Rule for 1/n.)
1
For n a postive integer, if fix) = x" ="\/;c and x#0, then
1

£l = et el ey

Proof: Another algebraic idea helps with thisanalysis. Asusual well find
f'(a) and herewe assumea=0. [ See Figure*** for the sketch of someexample
graphs. Can you see from the graphical interpretation why we might want to
exclude the case when a =07] Theideais simply to substitute y for f(x) and b Figure3
for f(a). f(x)=x¥n
The definition of the nth root gives us that if y = 7/;? theny" = x and

smilarlyif b = IVE thenb" = a. It should make sense from your experience with powersand roots

that when x approaches a, y approachesb. (Thislast statement should be understood intuitively at
this stage.) Now we use some of the algebra developed in the previous proofs to observe that

x-a =y" -b" = (y - by +y" b+ +yb"2+b ).
Now let's consider the difference quotient, starting with “step 3",
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f®S@_y-b
x-a X - a
_ y - b
(y _ b)(yn_1+yn_2b+...+ybn_2+bn_l) '
1

yn_1+yn_2b+...+yb n—2+bn—1.
Step 4: It'sagain timeto think about the limit, thistimeasy-b. The denominator hasn termseach

approaching b"*, so we seethat flay= — =—~—— = _q EOP.

Remarks: 1. Using this proposition we see that if f(x) =xY%, then the derivativeis found
easily again by bringing the exponent "1/86" down in front of the variable x and reducing the
exponent by one to "-85/86", so that f' (X)=(1/86)x®® . Again using Leibniz or operator notation
for this example would be written as follows:

1
dC\D _de® |1 %' 1 %
dx dx 86 86

D x =Dx86 :_,x86 = — 86
(VX (™) 36 36

2. The tangent line interpretation applied to this derivative is worth some thought for exponents
1/n when nis an odd number. Can you see why the slopes of tangent lines will always be positive
as might seem to make sense from Figure ***?

With the previous propositions as models for how to combine algebrawith the definition of the
derivativeto find these derivatives, the generalization of the power rule to positive and/or negative
fractional exponentsisleft as an exercises for the reader. [ See exercises ***|

(Hint: Substitute y=x""asinthe previous proposition.) We will return to these generalizations
in later sections after we have developed more rules for the calculus of derivatives.)

|.F.1b Derivatives and Linearity: Adding and changing scales of values.

Preface: Two of the most common ways that we combine numbers and variablesis by addition
and multiplication. Starting with positive integer powers of a variable and constants we can
multiply and add to form polynomial functionslike p(x) = 5+3x-2x2+7x3 and g(¢) = 3.4—nt—%t2.
Of course by using other powers more complicated elementary functions can be formed using

addition and constant multiplication. The calculusfor derivatives providestwo very useful and easy
rules for finding the derivatives of these functions.
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First we will investigate the effect of adding and scalar multiplication on the derivatives of
functionsby considering linear functions. Their derivativesare simpleto compute. Linear functions
also provide a pattern for what is happening with other functions because the derivative is closely
related through the geometric interpretation to the slope of the tangent line and the motion
interpretation at a constant rate.

Examplel.F.1. Letf (X) =5x+ 3and g(X) =4 x- 2.

Suppose that s(x)=f (x) + g(x) and k (x) = 12 f (X).

Find s(x) and k'(x) and comparetheseto f ' (x) and g'(X).

Solution: With such simple functions we can easily do the arithmetic:

s(xX) =f (X)+g(x) = (Bx + 3) + (4x-2) = 9 + 1.

So s(x)=9.

k(x) =12 (5x + 3) =60 x + 36.
So k'(x) =60 .
Now sincef '(x) =5 and g'(x) = 4 our work showsthat s (x) =f "(x)+g'(x) and k'(x) = 12 f *(x).

Before working through an argument for the general result about derivativesfor sumsand scalar
multiples of functions, let's work through one not so trivial example to see how the definition
interacts with the algebra.

Example|.F.2. Let f(X) = x* and g(x) = X°. Suppose that s(x) = f(x) + g(x) and k(x) = 12 f(x). We
will find s(x) and k'(x) and compare theseto f '(x) and g'(x).
Exploration: Asyou might expect, we' |l usethefour step approach with thederivativedefinition

that considersthe limit with h—>0, k) /(X) = I’}imo M . Thisadlowsusto usethevariablex as

it appears in the function characterization of the derivative by using h to control the estimations.

Step 1: s(x+h) = f(x+h) + g(x+h) = (x+h)* + (x+h)> and
- s(x) =f(x) + g(x) = X+ X°.
Step 2: s(x+h) -s(X) = (x+h)>- x* + (x+h)>- X°.
Step 3: sGe+h)-s(x) _ (e+hP?-x?+(c+h)’ x> _(x+hY?-x? (x+h)’-x°
h h h h

Noticethat the summandsinthelast expression are precisely the difference quotientsused to find
the derivatives of the functions f(x) = x? and g(x) = x°. Since we know the derivatives of these
functions from our recent work on powers of x, we will not proceed any further with the algebra.

Step 4: Think! Now it'stime to think about this difference quotient ash - 0.

2_..2
Analyzing the limit of the difference quotient as h - 0 we see that M# - 2x and

(c+hy’ x> 54 oo SCth)-s(x) _ (@+hy’-x?  (x+h)]-x°
h ' h h h

- 2x+5x*.
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We conclude that s /(x) = hlimo M =2x+5x%.
Notice that we have found again that s'(X)=f '(X) + g '(X).

For the function k we follow the sameidesas.
Step 1: k(x+h) = 12 f(x+h) =12 (x+h)?> and
- k(X) =12 f(x) =12 x°.
Step 2: k(x+h) - k(x) =12 (x+h)*- 12x* = 12[(x+h)* - x7.

k(x+h)—k(x) _ 12[(x+h)*-x?] 12 (x+h)*-x?

Step 3:
. h h h

(x+h)2 -x2 R

Step 4: Think! When we analyze the difference quotient ash -~ 0, we have 2x and

we conclude that £/(x) = =12-2x =24 x.

h-0
We noticethat k'(x) =12 f'(x) .

lim k(x+h)-k(x)
h

These examples suggest the general result about the derivatives of sums and scalar multiples of
functionswhich we now prove using the definition of the derivative. Theserulesare called the Sum
Ruleand the Scalar or Constant Multiple Rule. We will refer to them jointly sometimes asthe
linearity properties of the derivative.

Theorem |.F.5. (Linearity of the Derivative.) Suppose f and g are differentiable at x and that
s(x) = f(x) + g(x) and k(x) = o f(x) where o is aconstant real number. Then

i).s(x)=f"(x) +g'(x) (The Sum Rule)
and ii). k'(X) =« f'(X) . (The Scalar or Constant Multiple Rule.)

Proof: The proofs are not to hard to follow provided you keep in mind the concept that they
merely eliminate the use of the specific functionsin the last example.

WEe'll again use the four step analysis for the derivative that considersh - 0.

Step 1 s(x+h) = f(x+h) + g(x+h) and

- s(X) = f(x) + g(x)
Step 2: S(xth) -s(x) =f(x+h)- f(x)+g(x+h)-g(Xx).
Step 3 sx+h)-s(x) _ flx+h)-fix)+g(x+h)-gx) _ fix+h)-fx) , gx+h)-g(x)
h h h h

Step 4: Think! Now it'stimeto think about this difference quotient ash - 0.

Noticethat the summandsinthelast expression are precisely the difference quotientsused tofind
the derivatives of the functionsf(x) and g(x). We have assumed that f and g have derivatives at x,
soash - 0, the difference quotients for these functions must approach their derivatives, i.e.,
as h-0, f(x+h2—f(x) - £/ () and g(x+h2—g(x)

-~ g’ ().
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oo S+ =5(x) _flx+h)~fx) , gle+h)-g(x) - @) + g! ()

h h h
Forthe function k we follow the same ideas:.
Step 1: k(x+h) =« f(x+h) and
- k(X)) =a f(x) .
Step 2: K(x+h) - k(X) = o f(x+h) - o f(X) =« [f (x+h) - f(x)].
Step 3 k(x+h]: —k(x) _ ocf[(x+h]:—ocf(x)] . f(x+h}3 -f(x)

Step 4: Think! When we anayze the difference quotient as h - 0, as before we have

fw - f/ (x) and we conclude that £/(x) = hlimo w = o f!(%). EOP.

Notation: Supposey = f(x) and z= g(x). The following formulae expressthe linearity properties
for functionsin Leibniz and operator notations:

Leibniz Operator
d.. -4, .4 D.y+2 =D,y+D,z
o) T D) +909) = D) + DEO));
d _ . d Dfaey) =aD,y
@) =a . D(«f(x) = a DFf(X).

Comment: Notice that the sum rule essentially distributes the derivative
symbols to the two summands while the scalar multiple rule allows the
glerivative symbols to move past the scalar to operate on the function factor SO0 " e

one.

{——s(x)

I nter pretations: a) Graphical. Thegraph of thesum, s, resultsfrom placing
the graph of g with horizontal axis lying on top of the graph of f. See Figure fG =3
*** Thiswill shift the inclination of the tangent lineto g at x in the resulting
curve s so that itsslopeisf '(x) + g'(x).

The scalar multiple can be thought of as merely changing the scales on the :
Y-axis by the scalar .. The tangent line to the curve will be the same on the Figure4
graph but it's slope will be changed by the factor of o because of the changein ¥ =1(x) +9(x)
the vertical scale.

b) Motion. To think of the function s in terms of a motion interpretation, imagine along train
moving on alinewith the distance of its caboose from the end of theterminal platform measured by
f(t) meters at timet minutes. Y ou are on the train walking on the same line with your distance from
the end of the caboose measured by g(t) meters at time t minutes.
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Thus your position is s(t) meters from the end of the terminal platform at time t minutes. Y our
velocity with respect to the caboose is given by g'(t), but your velocity with respect to the terminal
platformiss(t) =f'(t) + g'(t) sincethe velocity of the train must be added to your vel ocity to account

for the train's movement.

Multiplication by aconstant can be visualized with atransformation figurein which any segment

on the source line is magnified ( or reduced) by a constant factor, the scaling
factor, on the target line. See Figure***.

Tointerpret the scalar multiplication rulein amotion context we need only
consider that we are changing the scales on the line for amoving object. So if
the object istravelling on aline with its scale measured in feet and we change
the scale to inches then we would multiply the positions f(t) by 12 to consider
k(t)=12 f(t). The velocity at timet would be multiplied by 12 aswell to givea
consistent measure of the velocity at time t, so K'(t) = 12 f'(t).This can be
visualized with a transformation figure showing the magnification of scales
after the position islocated first on a scale measured in feet, then transformed
to ascale measured in inches.See Figure ***

¢) Economics. For addition, consider C(x), the cost of producing x units
of acommodity (such asayard of linen fabric or aton of cement mix) being
made up of the cost of materials f(x) dollars and the cost of labor g(x)
dollars. Thus, C(X)=f(x) +g(x). Themarginal changein total production cost
for an additional unit of production C'(x) would be determined by the sum
of the marginal change in the costs of materials, f '(x), and the marginal
change in the costs of |abor, g'(x).

For an economic interpretation of scalar multiplication, suppose the
county tax rate on the selling price of acommaodity is6%. This means that
the daily county tax revenues, R, (from which the county will pay for the
general servicesit provides) is.06 S where Sisthedollar value of the total
daily sales revenues for the county. If the daily sales revenues on June 15"
are increasing at arate of $5000 per day, we can find therate at which the tax
revenues areincreasing since they are a scalar multiple of the salesrevenues.
In other words we can find the derivative of R asafunction of time since we
know the derivative of Sasafunction of timeis5000. See Figure ***. Here
is the way this might be expressed in Leibniz

4 p_ 9 065)-.06% 5-.06 32000 _$300
i dr

notation: )
dt day day
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Interpretations of Multiplication: Interpretations of addition are fairly simple because the numbers that we add in any
interpretation must represent the same type of measured quantity. [Thisis sometimesreferred to asthe homogeneity issue.] How
often have you heard a teacher say, "Y ou can't add apples and pears... Y ou can add pieces of fruit and more pieces of fruit." This
simple but important principle for using numbersis essential for any application using addition. On the other hand multiplication
has many different possible interpretations making it amuch richer tool for modeling. Aswe proceed through our studies we will
find it useful to consider some of the following interpretations that make sense for multiplication.

Repeated Addition. The first, and perhaps simplest, interpretation of multiplication is that multiplication is repeated addition.
When we place 5 lengths of measurement 12 meterstogether in succession on aline and ask for the total measurement we multiply
5times 12 to conclude that the total measurement is 60 meters. With thisinterpretation one of the numbers measures some quantity
specific to the application while the other is a measure of (abstract) numerical units. Thisinterpretation is rather limited since to
make sense one of the numbers must be a counting number or an integer.

Scale Change. A second interpretation is that multiplication is changing a scale. When we change the measurement of 5 feet to
inches

feet
in inches is 60 inches. In this interpretation one number measures a quantity specific to the application while the other number,
usually a constant, gives the scale conversion factor as a ratio.

inches we multiply 5 feet by 12 (the scale conversion factor measured as inches per foot) to conclude the measurement

Rates. A third interpretation of multiplication usesa product to find the change in ameasured quantity which ischanging at afixed

rate. We use this view when we find the distance traveled in 5 seconds when a person runs at a fixed rate of 12 feetd. The
secon
distancetraveled isthe product, 5 secondstimes 12 feetd = 60 feet. Likewise we would employ thisinterpretation to find that
secon

the total price for purchasing 5 liters of champagne at a price of a $12 per liter is 5 times 12 = $60. In this product one number
measures a rate of change or exchange while the other number gives a measure of a variable controlling the change.

Proportion. Finally multiplication can be interpreted as relating different concepts that are connected quantitatively by direct
proportions. For example the area of arectangle with a fixed base length is proportional to the length of its width. As aresult to
determine the area of arectangle 5 feet wide and 12 feet wide we multiply 5 feet by 12 feet so the area is 60 square feet. More
subtly perhaps, we consider the work done by a group of people proportional to the number of people working as well as to the
amount of time spent on the task. So when we measure the work done by 5 people each working 12 hourswe multiply to find they
haveworked together 60 person-hours. Thisinterpretationisfound aswell in measuring the work done by applying aforceto move
an object through a distance, such as lifting a heavy box. For example, it is common to
measure the amount of work done by lifting 12 pounds up 5 feet by multiplying to give the
measure as 60 foot-pounds. Voo oo w

Since multiplication hassuch avariety of interpretationsitishelpful initially to focuson one
interpretation. We will use that of changing scale here and presume that the change of scale

factor doesn't vary- so we are thinking of multiplication of each measured quantity by the /
same number, the scalar factor. Thus we call multiplication by a constant, scalar
multiplication. [Other ways to think of this type of multiplication be a constant would be
using afixed rate, velocity or unit price, or afixed length of a rectangle with varing width \

in an area problem. Y ou should construct your own examples of interpretations related to
constant multiplication.]

Multiplication by a constant can be visualized with atransformation figure in which any
segment of agiven measurement is magnified ( or reduced) by a constant factor, the scaling
factor. See Figure ****

\_ /
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Formal Application of theL inearity Properties: Thelinearity propertiesof thederivativearequite
simple to use after alittle experience. With them and the derivatives of the power functions found
in thefirst part of this section, we can find the derivatives of polynomial functions as well asfairly
complicated combinations of functions without resorting to the definition of the derivative and the
complications of finding limits.

Example |.F.3. Find the following derivatives as indicated:

a) Find D s(1) when s(x)=7x3+é :
X

6
b) Find % when y = 3%

Vx

Solutions: a) Westart by recognizing that thelast operation used to find thevalue of sisaddition.
Ignoring the constant factors of 7 and 6 in these two summandswe et f(x) =x*and g(x) = /x. Then
we can reassemble the function s,

s(x) = 7 f(x) + 6 g(X).
Using the Sum Rule we have
D,s(X) =D, (7f(x) +69(x)) =D, (7 (x)) + D, (6 9(x)).
Now we can use the scalar multiple rule to obtain the derivatives of theindividual summands so
that D (7f(X))= 7D , f(x) and D , (6g(x))= 6D , g(x) therefore D s (x) =7D_f(x) +6D_ g (x) .

Replacing these derivatives with the appropriate values from the power rules gives the result, D
S(X)=7 (3x?)+6(-1/x?) and thus D ,s(1)= 21 - 6 = 15.

Thiswork to find D ,s(x) can done more efficiently by abusing the notation of the expressions
involved. Thisallows usto avoid naming the functions as we apply the sum and the scalar multiple
rules. Here's how this work might be written with this slight abuse of notation.

D, s(X) =D (7x® + 6/X)
=D (7x%) + D (6/x) (Sum Rule)
=7D (x°) + 6D (1/X) (Scalar Multiplication Rule)
=7 (3x%) + 6 (-1/x?) (Power Rule)
=21 x? - 6/x2.

At this stage replace the "x" in the expressions with the number 1 and you have the same resullt,
D, s(1)= 21(1)?-6/(1)%=15.

b) Using the same style of notational abusewe find dy/dx. First we recognizethat asthe function
is currently expressed as arule, the last operation used to compute the value of y is division. To
allow usto use the sum rule we must use alittle algebrato express the function y with a procedure
that concludes with addition. Thisis not too hard once we recognize we can perform the division:

6 1 n
= 35%7 3y 72455 . We continue now very similarly to part a), so

3
Ay g sy
d  dx
d Loog 1
= Z03x H+L(5x Sum Rule
dx(x )+dx(x ) ( )

Chapter |.F.1 9/23/5 12



- 3—(x )59 et %) (Scalar Multiplication Rule)

9

= 3(—%) x 7+5(%) x? (Power Rule)

Exercises|.F.1
1. Findf'(1) for the following functions:

a f(x) =x* b. f(x) = 1/x* C. f(x) = xV

2. Findf'(1) andf'(-1) when

a f(X)=x?+6x-3 b. ft)=t3-5t2+1t
C. f(u)=u?® - 4u® d. f(2=1+z+2z%+6z°%+ 24z".
3. Findf'(l) whenf(x)=
5,9,3 3
a 3x5+2x b. 2\/;C+;
1
b. (x3+2x?)x 3 d. 2
x2
4. FindDAt) andDjf(4) whenf(t) =
a -16¢2+15¢+2 b. 2/t+4( /8
2 3
c. t7+1 o 230
t
5 Fi ndiy wheny =
dx
a x3+xtexd4x2ex+1 b. oxedtg2edy3 1o
2 6 24
c. 1. 1,26 d G
2 3 4

6. Thederivative of any polynomial:

Find P '(X) when P(X) = a, + a,x + a,x* + a,x* + a,x".

Generalize your result to give aformulafor the derivative of any polynomial
function,

P(x)=a0+a1x+a2x2+...+an_1x”"1 +ax"” where aga,.a,,...a

n-1°
constants.
7. Suppose an object iss(t) feet above ground level at timet secondswhere

a, are al

- ) IS L)

s(t) = -16t* + 64t wheret > 0. Find when the velocity of the object is -
positive . When it the velocity negative? Interpret these answers in
terms of the motion of the object. When is the velocity of the object
zero? What is the highest the object was above ground level ?
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8.

10.

11.

Supposethefunctionsf and g havegraphsasin Figure***. Based on these graphs estimate
the following derivatives:

a s'(0);s'(1);s'(2) wheres(x) =1f(x) + g(x).

b. k' (0);k'(D); k" (2 wherek(x) =5f(x).

C. P (0);p'(1);p'(2) wherep(x) =2f(x) + 59(x).

Find al x wheref'(x) = 0 when

af(X)=Ax*+Bx+C b.f (X)=x®+ax®+bx+c c.f(X)=x+1/x x#0.

For x> 0, draw agraph of y =x?and y = x¥2. Draw the line tangent to the first graph at
(2,4). Draw the line to the second graph at (4,2). How are the slopes of these lines related
numerically? Notice that these graphs are symmetric with respect to the line y=x. Use this
symmetry to explain the numerical relation of the slopes of the tangent lines.

Draw agraph of y=x*and y = x**. Draw the line tangent to the first graph at (2,8). Draw
the line to the second graph at (8,2). How are the slopes of these lines related numerically?
Notice that these graphs are symmetric with respect to the line y=x. Use this symmetry to
explain the numerical relation of the slopes of the tangent lines.

Reversing the process: Once we are able to find derivatives using the representation of a
function algebraically we can begin to explore theissuesof finding algebrai c expressions describing
functions based on information about derivatives. The next problems ask you to consider some of

these.

12.

13.

14.
15.

16.
17.

18.
19.

20.

21.
22.

The position of an object moving on astraight line at t second is s(t) meters to the right of
agiven point, and s(t)= 1+ kt2The velocity is observed at 3 seconds to be 12 meters per
second. a Find k. b. Find s(5).
C. At what time(s) was the object 201 feet from the object?
Find afunction P where P(x) = f(x) for the following:
a. f(x)=3 b. f(x)=6x + 3 c.f(x)=9x*+6x+3  d.f(X)=Ax*+Bx +C.
Suppose f{x)=Ax*+Bx+C . Find A, B, and C so that f(0)= 4, f '(0) = 2 and f '(1)=6.
For each of the following find a function y(x) so that
d

a =y =3x2+4x3+5x4; iy = 1+x+x2+x3;
dx dx

b. iy = i+i’ iy = 3x3—5x1/3+l .
& ¥ dr =

Find afunction f whereD_f (x) =6x?+4x-3 andf(1) = 2.

The Difference Rule: D(f(x) - g(x)) = D(f(x)) - D(g(x)). aUsethe Linearity Properties to
justify the Difference Rule. Restate the rule in Leibniz and function notations.

b. Use the definition of the derivative to justify the Difference Rule.

Follow the proof of Proposition I.F.3 to show that if f(x) = 1/x° then f'(x)=-5/x".

Follow the proof of Proposition I.F.4 to show that if f(x) =x® the D, f(x) = 1/(5x*?).

2

Using the definition of the derivative, show that%(x 5) = %x s

Prove the power rule for exponents that are rational numbers.
Suppose F(x) isaprobability distribution for random variable x on theinterval [0, 2]. Find
the probability density at x=1 when F(X) is as follows:
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a F(X) = 1/4x+ 1/8 x? b. F(X)=1/8x+ 3/16 x?
C. F(X) = ax + b x?where a>0, b>0, and 2a+ 4b = 1.
d. F(x) = /8 x*+ 1/16 x°. e. F(X) = /6 x+ 1/12 x* + 1/24 x°.

23. Wesay that two curvesare orthogonal at the point (a,b) if the curves pass through the point
(a,b) and the tangent lines to the curves at (a,b) are perpendicular.
a Show that the graphs of f(x) = x? and g(x) = 1/vVx are orthogonal at the point (1,1).
b. Find p so the graph of g where g(x) = x” is orthogona to the graph of f where

f(x)= x"at (1,1).

C. Giveagenera statement on when the graph of g where g(x) = xP will be orthogonal
to the graph of f wheref (x) = x9. Prove it.
d. Arethe curves with equationsy = x and y =1 - x? orthogonal ?

e Find any A where the graph of y = A-x?is orthogonal to the graph of y = x*.

24. Research/reading project: Look in some other calculus booksto find adifferent proof of the
derivative of the power functions using the binomial theorem. Discuss the advantages and
disadvantages of using the binomial theorem for the proof.

Chapter |.F.1 9/23/5 15



