
 (This section may be deferred for treatment after Chapter II)1

Chapter I.G I.1

What is the explanatory role of

the derivative in a model? What

is the predictive role of the

derivative in a model? What is

the decision making role of the

derivative in a model?

I.G. Using the Derivative - Developing Intuitions.1
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Introduction. 
 Modeling [VVPBS]: Models can have explanatory and/or predictive

powers that help us understand the past and plan for the future. A model
can help us date an archaeological find or predict how long the effects of
a drug will last. In the example of the trip, our model can help us recall
where we were a few hours ago or estimate when we will arrive at our

destination. The derivative as a tool for modeling provides information
about a point on a curve, about motion at an instant in time, and about the
dynamics of a function at a single number. Furthermore, knowledge or assumptions about the 
derivative at one or several points can tell us about change over an entire interval (for a curve, for 
time, or for numbers). 

When we consider a variable or values of a function on some interval, we are often concerned 
with changes for either a short interval, a long interval, or a very long interval. In the language of 
modeling, we sometimes describe planning, historical analysis or forecasting with the phrases 
“short term”,  “middle range”, or  “long term”.  Another way to describe information uses the 
terms local or relative (referring to what happens relatively close to a particular  point or 
number), and global or absolute (indicating the findings concern all meaningful uses for the 
variable). 

In more concrete terms, to describe a test score as the highest or lowest for a group of people 
in a room at a particular time gives local or relative information about the test scores. To 
describe a score on a test as the highest or lowest possible for any administration of that test tells 
us something about the score that is global or absolute without consideration of place or time.

In this section, we begin examining applications of the derivative – both local and global – for 
explanation (I.G.1) and for prediction or extrapolation (I.G.2). Our approach at this stage will be 
informal, relying on your ability to recognize patterns and generalize, rather than trying to be 
rigorous. Our purpose is to develop intuitions through experience. We will treat these and other 
applications more carefully in Chapters III, IV, and V. 

Read the examples here carefully and, as you read, note connections between function 
qualities, characteristics of the derivative, and the interpretations we have developed. These 
connections will provide a background for making sense of function qualities and derivatives 
through the remainder of our work.

I.G.1. The First Derivative - Indicating Change.

The velocity of a moving object gives us information about how the object’s position is 
changing, and, vice versa, information about how a moving object’s  position is changing 
informs us about its velocity. Similarly, the slope of a line gives us information about the 
appearance of the line and vice versa. Likewise,  the marginal profit gives us information about
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how profit is changing  and vice versa.  In this section, we begin to study the correspondence
between functions and their derivatives  more carefully.

Example I.G.1: Consider the linear function l(x) = 5x-3 in each of the interpretations: motion,
graphic, and economic.

Motion: We can interpret
this function dynamically,
giving the position of a
person jogging at a velocity
of 5 meter per second from
an initial position located 3
meters before the starting line
on the running course. See
Figure 1.

Figure 1

As time progresses the
runner’s position increases
relative to the starting line.

 Graph: We can interpret
this function graphically as a
line with slope 5 and Y-
intercept (0,-3). See Figure 2.

Figure 2

As we  scan the figure
from left to right we see the
line rising on the graph. 

Economics: We can
interpret this function
economically, giving the
profit for a small enterprise
with a marginal profit of $5
per unit and an initial loss of
$3 when no units are
produced.

Figure 3

With more production, the
profit increases.

We have already noted the connection between these interpretations in Section I.C, but our 
focus now is on the fact that for any x we have l '(x)=5. 

Key Question: What does a positive derivative tell us about l and its interpretations? 

In the mapping figure
visualizing the jogger, we see
that as the point on the source
line (time) moves up
(indicating a later time), the
corresponding point on the
target line also moves up
(indicating a larger value for
the position function). 

On the graph we
understand from the positive
slope that as we scan from
left to right, the line moves
up. 

In the mapping figure
visualizing the profit
function, we see that as the
point on the source line
(production level) moves up
(indicating greater
production), the
corresponding point on the
target line also moves up
(indicating greater profit). 
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The word increasing is commonly used to describe these situations and this kind of function
behavior. 

More formally, we say a function f  is increasing on a set or domain S if the values of f are
larger for larger numbers in S. We consolidate this concept in a more technically-phrased
definition as follows:

Definition: A function f is increasing on a set or domain S, 
if, for any a and b in S,  a < b implies f (a) < f (b).

Figure 4
Graph for an increasing function.

Figure 5 
Mapping diagram for an increasing function.

Example (continued): Verify that the linear function l(x) = 5x-3  is increasing on its
domain in the technical sense just defined. 

Proof: Suppose a and b are real numbers with a < b. 
Then 5a < 5b and 

so l(a) = 5a - 3 < 5 b -3 = l(b). 
Thus for any numbers a and b where a < b, we have shown that l(a) < l(b), completing the

argument that l is an increasing function.  EOP.
Comment: The function l is increasing for all real numbers, making this a global property

of l. 

You can consider a similar linear example where the derivative (velocity, slope, marginal
profit) is negative to see that the appropriate descriptive term for that situation is decreasing.
Here is the technical definition for a decreasing function:

Definition: A function f is decreasing on a set or domain
S, if for any a and b in S,  a < b implies f (a) > f(b).
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Figure 6 Graph for a decreasing function. Figure 7 Mapping diagram for a 
decreasing function.

Notice that the only difference in the technical definitions of increasing and decreasing is in
the relation of f (a) to f (b). This should make sense in both the mapping figures and the
graphical interpretations using linear functions as examples.

Linear Functions Graph Mapping Diagram

Increasing

Figure 8
Figure 9

Decreasing

Figure 10 Figure 11 
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Example I.G.2: Let's consider the quadratic function  q where q(x) =  - x2 + 6x - 5 and its 
variation in relation to its derivative. The graph of q is a parabolic curve with  vertex at (3, 4). 
See Figure 12. 

As x goes from left to right the curve moves up for x < 3, while for x > 3 the curve moves 
down. The mapping diagram (See Figures 13 and 14) of q helps visualize a motion 
interpretation, showing the position of a moving object increases before time 3 while its 
position decreases after that same instant. Alternatively the mapping diagram (See Figures 13 
and 14) of q can visualize a profit interpretation showing the profit increases when producing 
less than 3 units while it decreases when producing more than 3 units.      

Figure 12
Graph of 

q(x) =  - x  + 6x - 5 2

Figure 13
Mapping diagram of q 

with x < 3.

Figure 14 
Mapping diagram  of q 

with x > 3.

The increasing or decreasing quality of this function depends on the interval considered,
making it a local property. We describe this function as increasing  for x < 3 and decreasing for
x > 3. It is often convenient to describe these local properties using interval notation for these
domains. So we say that q is increasing on the interval (-4, 3) and decreasing on the interval
(3,4).

 Now let's compare the information about the function increasing and decreasing with
information about the derivative of q for the corresponding intervals. 

We observe first that q’(x) = - 2 x + 6. 



2. How would this information influence decisions? As a person making decisions about production levels you might be reticent to increase
production at a level above 3. With local information only of increasing  profits at production levels below 3 you would not see how  profits will
eventually turn around with higher production levels and actually decrease steadily for production levels over 3 units.
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Motion Interpretation: In the

context of a moving object with

position given by the function q,

we interpret the derivative of q, q',

as the instantaneous velocity of the

object.

For the example with  position

q(x) at time x we have that the

velocity is given by q'(x) = -2x + 6,

resulting in positive velocities

before time 3 and negative

velocities after time 3.  

This matches our previous

observation that the object's

position is increasing until time 3

after which the position is

decreasing. 

At the instant 3 the object's

instantaneous velocity is 0, so the

object "stops" for that instant while

at any other instant it is moving. At

time 3, when the direction of the

object's motion changes, the object

reaches its highest position, 4, the

maximum  value for q.

Graphic Interpretation: In

the context of the graph of the

function q, we interpret the

derivative of q, q', as the slope of

the line tangent to the graph.

For the example we have that

the slope of the tangent line is

given by q'(x) = -2x+ 6, resulting

in positive slopes when x is less

than 3 and negative slopes when x

is greater than 3. 

This matches our previous

observation that as x goes from left

to right the curve moves up for

x<3, while for x > 3 the curve

moves down. You might have

expected this from the graphical

interpretation of q alone based on

tangent lines for points on the

graph to the left and right of the

vertex at (3,4) where the graph has

its highest position. 

We also see that at the vertex,

q'(3) = 0, so the tangent line at the

vertex is horizontal. 

Economic Interpretation: In

the context of economics with

profit given by the function q, we

interpret the derivative of q, q', as

the marginal profit.

For the example with profit

q(x) when producing x units, we

have that the marginal profit is

given by q'(x) = -2x+ 6, resulting

in positive marginal profit when

producing less than 3 units and

negative marginal profit (i.e.

marginal loss) when producing

more than 3 units. 

The mapping figure

visualizations show that when the

production level is below 3 units

the profits increase for increased

production. When production goes

over 3 units the profits decrease

with further increases of

production. 

At 3 units the profits are at

their highest, 4. This information

can be useful for making business

decisions. 2

Example I.G.3: (Probability Interpretation.) Consider an experiment in which we measure a 
random variable R. Suppose the cumulative distribution function, F,  for R  is a linear function 
on the interval [0,2]. (See Section I.C.1 for a review of probability distribution and density 
functions.) Thus F(0) = 0 and F(2) = 1, so F(A) = ½ A. Whenever 0#A<B#2, the probability 
that  R<A is less than the probability that R<B, i.e., F(A) < F(B), so the function F is increasing 
for the interval [0,2]. [Of course this is “easy” to see because F is linear and has a positive 
slope.]

For a nonlinear example, suppose the cumulative distribution function, F,  for R  is a 
differentiable function on the interval [0,2] represented by the graph given in Figure 15. 
Consider A and B in the interval [0,2]. Whenever 0#A<B#2 the probability that  R<A is less 
than or equal to the probability that R<B, i.e., F(A) # F(B), so the function F is increasing for 
the interval [0,2]. 
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Figure 17
Mapping Diagram 

for F

Figure 18
Mapping Diagram 

for F'

Figure 15 Distribution  Function F for

the Random Variable R
Figure 16 Density Function F’ for the

Random Variable R

The derivative of F, shown in Figure 16, is the density function of R. As you might expect, 
the density function is non-negative for all x in the interval [0,2].  

Note: In Figure 16, where A=1 the derivative has its greatest value. Intervals around A=1 
have relatively high density while the graph of F in Figure 15 is steeper for the same intervals. 
On the other hand, for intervals around A = 0 and A = 2, in Figure 16 we observe lower density 
while the graph in Figure 15 is flatter. 

In the context of the probability interpretation of the derivative, intervals with  higher 
probability density, i.e., with higher derivative values,  have greater likelihood of the value of 
the  random variable occurring in those intervals. These are also the intervals where the 
distribution function's graph is steeper.

We can use mapping diagrams here as well to explore the relationship of the  probability 
density- distribution connection with the derivative. See Figures 17 and 18. Examining the 
distribution mapping figure (Fig.17) we see that the
distribution values are increasing. More interesting perhaps
is the feature that F(1)=0.5.

In Figure 17, although the source intervals correspond 
with equal sizes, their related intervals in the target of the 
distribution function differ in size. When the interval for the 
distribution function's values is longer, the  probability for 
the random variable falling in that interval is greater, as is 
evidenced by a higher density function value in its mapping 
diagram  (Figs 17 and 18). When the interval for the 
distribution function's values is shorter, the  probability for 
the random variable falling in that interval is less, as is 
evidenced by a lower density function value in its mapping 
diagram  (Figs 17 and 18). 

In these examples and their interpretations (motion, graphical, economic, and
probability), we have noted some connections between the sign of the derivative (positive or 
negative) and changes in the controlled variable (increasing or decreasing). These connections 
will be investigated more thoroughly in  Chapter III.B.
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The word "primitive" has a

connotation in common

language of being early and

initial, in contrast to the term

"derivative" which connotes

something  which arises later

and after some processing.

These words seem quite

appropriate to describe the

relation of a function f to the

derivative function f ' that

measures the primitive

function's rate of change.

I.G.2. Reversing information:
How information about rates leads to information about primitives.

The Derivative and The Flow of Information: In our motivation for the derivative we 
used information about position to estimate velocity, about points to estimate slope, about 
costs and profits to estimate marginal costs and profits, and about probability distributions to 
estimate probability density. For a function’s derivative at a particular  number, we estimated 
by considering quotients determined by values of the function for numbers close to the given 
number. 

What is quite remarkable, yet sensible, is that we can reverse the flow of information. From 
knowledge about our position and velocity at one time, we can estimate our position a little 
earlier or later. From knowing a point on a curve and the slope of the tangent line there, we can 
estimate where nearby points on the curve are. Knowing the marginal cost and profit at one 
production level can help us estimate the costs and profits for small changes in production 
levels. And knowing the probability density of a number allows us to estimate the probability 
that a random variable will assume a value relatively close to that number. All these examples 
show the merit of knowing values for a function and its derivative at a single point to estimate 
the value of the function at nearby points. 

As we have seen in Section  I.G.1, the derivative can provide qualitative information about 
a function, e.g., a positive derivative indicates an increasing function.There are many ways to 
use  information about the derivative to reconstruct the primitive function values or estimate 
them as needed.  Information about the derivative might include the numerical value of the 
derivative at particular numbers, or merely how the value of the derivative can be determined. 
We may be given much information about the derivative, but know the value of the function at 
only one point. 

The examples in this section illustrate the reversed flow of
information. More examples of using derivative information
to learn about  primitive functions will appear throughout the
remainder of the text. This is one of the most important
themes of the calculus.

In our interpretations of the derivative, we want to recover
information about primitive measurements from secondary,
derived measurements. More specifically with a motion
interpretation, we want to recover information about a car's
position  on a trip from knowing the car's velocity at various
(or perhaps all) times and the car's position for at least one
moment. For the graphical interpretation, we want to recover
the graph of a function from knowing only the slope of the
tangent line at various points and at least one point on the graph. For an economics
interpretation, we want to reconstruct the primitive profit (or cost or revenue) function based on
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information about marginal rates at several levels of production and knowledge of the profit (or
cost or revenue) at one level of production .

Let's consider more detailed examples, first with an algebraic example and then with
numerical and graphical examples afterward.

Example I.G.4: (Algebraic) Suppose f '(x) = 8x - 3  for all x and f (2) = 6. 
Find f (0) and f (10).
Discussion: We would like a simple algebraic characterization of the function f that will

allow us to compute f (0) and f (10). Of course there are an enormous number of functions that 
have their value being 6 at 2,  i.e., with f (2) = 6. The condition specifying the derivative, 
f  '(x) = 8x - 3,  diminishes the number of possibilities considerably. [We will see in Chapter IV 
that there is only one possible solution to such a problem. This is not hard to understand when 
you use the motion interpretation. [Perry Mason] Consider two objects being at the same place at 
time 2 (on different days) and both traveling at equal velocity at any time. Then these objects will 
always have the same position function , thus only one position function is possible.]

Our initial strategy to solve this problem is to guess a function that might work and then 
check whether our guess is correct. We'll name our guessed function g, so after the guess we will 
check whether g' (x) = 8x-3 and g(2) = 6. 

Solution: Let’s guess  g(x) = 4x2  - 3x. You can check that g'(x)= 8x - 3, which is some success, 
but unfortunately g(2) = 10, not 6. So this candidate function g is not the function we desire to 
satisfy both requirements for the example.

Since our initial guess has g(2) = 10, we can adjust our result  by subtracting 4 from the value 
of g(2) to obtain 6. 

This leads us to revise our guess with the function r where r(x)= 4x2  - 3x -4. 
This is the solution we are seeking. You can verify for yourself that r '(x) = 8x - 3  for all x and 
r (2) = 6. 

 Now that we have discovered the correct algebraic characterization of f, namely, 

 f (x) = 4x2  - 3x - 4, 

we find f (0) = -4 and f (10) = 366.

Let's look at the numerical side of this type of problem. If we are using only numerical 
information at a few points,  predictions about other points will be, at best, estimates based on 
assumptions about how given information relates to changing variable values. These 
assumptions determine a mathematical model, our basis for further analysis, discussion, and 
inference.

Example I.G.5: (Numerical) Let's consider some numerical data that is at least consistent 
with the last algebraic example at x = 2 . Suppose f (2) = 6 and f  '(2)=13. 

Based on this information alone, how can we make an estimate for f (0) and f (10)?
Discussion: With this little information, a sensible approach to making an estimate of f(0) is

to assume that the derivative of f is estimated by the difference quotient . 
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Solution:Using the given hypothetical data about f gives ,

i.e, .  Now using the algebra of approximation we multiply the estimate by 2

giving the new estimate , and so we can approximate f (0) . 6 - 26 = -20.

Following the same approach to estimate f (10), we estimate the derivative of f at 2 with

. Using the given data gives . Now the algebra

of approximation suggests that . So we estimate f (10). 6+104 = 110.

Comment: Let’s compare the results from our previous algebraic example with these 
numerical estimates.  From the much stronger assumptions of the algebraic example we found 
the values exactly: f (0) = -4 and f (10) = 366. With the weaker assumptions made for our 
numerical estimates we arrive at estimates  f (0) . -20 and f (10) . 110. 

Notice that at x = 2 the two examples have consistent information about the value of f and 
the value of the derivative f’ . The different results make sense because of the difference in 
assumptions in the two approaches. With complete knowledge of the values of the derivative 
of f  for all x, f’(x), we are able to reconstruct the function f exactly. In contrast with the very 
limited knowledge of the value of the derivative at 2 only, we could assume that estimates of 
the derivative could be used to estimate the values of the function- reversing the flow of 
information. 

Where previously we used information about the values of the function to estimate the 
derivative at a particular point, now we use information about the derivative at a particular 
point to estimate values of the function.  EOC

A Motion Interpretation for Example I.G.5: We can use the motion interpretation with 
units of meters and seconds to make some sense of the estimates obtained in Example I.G.5. 
Treating the derivative as the velocity of a moving object, we interpret  f '(2)=13 as a 
statement that at time 2 seconds the object has a velocity of 13 meters per second. To estimate 
the position at time 0, we recognize that this is 2 seconds earlier and make the assumption that 
the object was traveling at a constant velocity. So, during the time between 0 and 2 seconds the 
object would move 13@2 = 26 meters. Using 26 meters as an estimate of the change in position 
we estimate the position at 0 seconds to be 6-26= -20 meters. Similar thinking leads to the 
estimate at time 10.

The quality of the estimates should make sense from the motion interpretation. With a 
longer time involved in the estimation and without knowing more about the context, there is 
less likelihood that the assumption of constant velocity will be sensible. So starting from 
information of the position at time 2 seconds, we would expect the estimate for the position at 
0 seconds to be more accurate than the estimate for the position at 10 seconds.
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Figure 19
Direction Field for 

f '(x) = 8x - 3.  

Figure 20

Note: You might think that Example I.G.5 is far from correct in its estimates in comparison
to Example I.G.4. It is important to emphasize again that the assumptions for these examples
were not the same, even though the information at 2 is consistent. In fact we know very little
about the function's derivative in example I.G.5, so we don't know that the function in this
example is anything like the function in I.G.4 except close to 2, where the difference quotients
that estimate the derivative at 2 are close to 13 for both examples.

We turn to a graphical example for reversing the flow of information. In a way this visual
approach may be the most elementary interpretation. We will see that the idea for this reversal
is so sensible that it could be used as an assignment for a primary school student.3

Example I.G.6. Figure 19 is called a direction (or slope) field and is a 
visualization of the information in the derivative equation f '(x) = 8x - 3. In 
this figure, we have a section of the coordinate plane with short line 
segments of differing slopes drawn using the following procedure: At a 
point with coordinates (a,b) the line segment is centered at that point with 
slope 8a - 3. For example, the slope of the line segment at the point (1,2) is 
equal to the value of the derivative at that point, i.e, the slope is 
f '(1) = 8C1 - 3 = 5 . In fact, the slope of each line segment at a point (1,b) is 
the same since it is also equal to the value of the derivative when x =1, i.e., 
the slope is  f '(1) =5.

The geometric problem comparable to I.G.4 is to find a curve that 
passes through the point (2,6) so that its tangent lines conform to the 
pattern of the line segments of the direction field in the figure. 

Discussion: In other words, we want to draw a curve through (2,6) so 
that the tangent line for any point on the curve would be consistent with 
the rule given for drawing segments in the direction field. In some ways, 
this can be restated as a problem in recognizing and integrating the visual 
pattern in the field to draw a single curve. 

Solution: Figure 20 shows the solution curve ( called an integral 
curve) for the given slope field, drawn with the aid of a computer. You 
should also try this as a free hand sketch to get a sense of how the direction 
field controls the shape of the curve.

The graphical problem of estimating the value of f(0) is to estimate the
second coordinate of the point on the curve with first coordinate 0, that is, the Y- intercept of 
the curve. Based on the sketch in Figure 20 it would appear that point has coordinates (0,-4). 
We will pursue this visual interpretation of the reversal problem further in Chapter IV.



Chapter I.G I.12

Figure 21

Figure 22

Figure 23

Figure 24

Exercises I.G: Work in progress.
1. Each of the following figures is the graph of a function. For these functions describe

the intervals where you believe the derivative functions will be positive and those
where the derivative functions will be negative. Discuss where the derivative
functions are 0 and how this relates to the graphs.

a.

b.

c.

d.




