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Calculus a . The branch of mathematics that deals with limits and the differentiation and integration of functions of one or more variables.

b . A method of analysis or calculation using a special symbolic notation.

c . The combined mathematics of differential calculus and integral calculus. A system or method of calculation.[ Latin, small stone used in reckoning]

Chapter 0.A  1/18/11 I.1

Chapter 0: Introduction, Background, and Other Goodies 
A. What is Calculus?

     Sensible Calculus © 2008
There are all too many books with titles using the term "Calculus" and courses with the same title

to think that this is the first time you have seen this word. Hey, you're in a calculus course right now!
But do you know why the subject is called "calculus" and precisely what it is? The answers are not
simple. To begin, we'll relate our understanding of  the background of calculus before the term
"calculus" was identified as a specific subject area of mathematics. 

What is “calculus”? 
Quite simply a "calculus" is a method for systematically determining a result, for arriving at a

conclusion, or (if you don't mind the redundancy) for calculating an answer . [Add note/box saying1

something linguistic  about stones, hard materials, and dentistry.] In this sense there are many
calculi, such as the calculus of propositional logic, the calculus of set operations, the calculus of
probabilities, etc.  But when someone talks about "The Calculus," be it "differential" calculus,
"integral" calculus, or the calculus of infinite series, the reference is usually to "The Calculus of
Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716)."  

This calculus provides procedures for solving problems in the analysis of change: 
• determining rates of change,
• predicting the amount of change and 
• explaining the quality of change, and 
• connecting the concepts of change with the language and symbolism of algebra that

describes change. 

This calculus also develops tools for solving problems of geometry: 
• determining a line tangent to a curve or finding the area of a planar region,
• predicting the shape and explaining the graphic qualities of a curve, and 
• connecting these geometric concepts to the language of algebra that describes geometry.
 
 Before Newton and Leibniz, several great mathematicians had studied many of the same

physical and geometrical problems as those treated by the calculus, from Euclid and Archimedes
in antiquity to Descartes, Fermat, and Pascal in the early 17  century. Newton and Leibniz differedth

from those who had worked on these questions before them by achieving a general overview to the
problems. Their approaches, developed independently, solved the problems using systematic
techniques of calculation that depended fundamentally on algebraic descriptions of the problems.
With these new techniques a user could avoid repetitious conceptual analysis of each different
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curve or formula. The conceptual analysis was summarized in the justifications of the calculus rules,
which were the primary achievement of the new calculus. While the results for actual problems
contained within the works of Newton and Leibniz may not have been new, it was the methods that
were revolutionary in their generality.

Since its early development, the calculus has grown more important. Its analysis has been applied
in many contexts: the physical sciences and engineering, the life sciences,  economics, and
probability.  In fact, the calculus has uses in practically any area of study where change is important.
It provides a theoretical basis as well as a practical tool for finding exact or estimated solutions to
problems in almost every scientific discipline.

   
Let's touch briefly on two problems of historical importance to the

development of the calculus, the tangent problem and the area problem. 

The Tangent Problem: You may recall a geometric construction, known
at least since the time of Euclid (about 300 B.C.E.) for drawing a line that
touches a circle only at one specific point, P, on the circle. [See Figure 1.]
This line is called the tangent line to the circle at P. The construction of this
line involves two simple steps: i) draw a radius from the center of the circle,
O, to the point P; and ii) construct a line at P that is perpendicular to the
radius OP. This perpendicular line is the desired tangent line.

A similar problem for a parabola was solved by Archimedes. (c. 287
B.C.E.–212 B.C.E.) The problem is to construct a line that touches a
parabola only at one specific point, P, on the parabola. [See Figure 2.] As
we proceed in this and the next chapter  we will develop methods to solve
this problem. This line is called the tangent line to the parabola at P. 

The general tangent problem is more difficult to state because the
quality of being tangent in general requires a more subtle characterization.
Ignoring the issue of what "tangent" means for now, we describe the general
tangent problem as the problem of finding a method for drawing a line
tangent to a curve at a specific point P on the curve.

The Area Problem: The area problem is perhaps more familiar today
as a measurement problem. No doubt you have learned many formulae for
finding the area of common planar regions such as those enclosed by
squares, rectangles, triangles, trapezoids, and circles. Ancient treatments of
area formulated the problems in terms of providing a geometric
construction. 

For example, the ancient area problem for a right triangle was to
construct a rectangular region with area equal to that of the given right
triangle. [See Figure 3.] The geometric solution follows two steps: i) Bisect
one leg of the right triangle. ii) Form  a rectangle with one of the resulting
segments and the other leg. This rectangle has the desired property, i.e., the area of this  rectangle
is equal to the area of the original right triangle.



A proof of Barrow's Theorem based on  his original argument appears in the Appendix at2

the end of this section.
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Figure 4

The statement of the general area problem in geometry was to construct a rectangle with an
area that is the same as the area of a given region in the plane.

The connection between geometry, numbers, and algebra is generally
considered one of the major contributions of the French mathematician,
scientist, and philosopher, René Descartes (1596–1650), though some of the
ideas appeared in earlier works of Oresme, Viete, and Galileo.[pronunciation
-historical note?] 

Once measurement and algebra are added to the tools with which we
analyze the area problem, we arrive at a familiar formulation of the right
triangle area result.  If the legs of the right triangle have lengths a and b then
the area A of the triangle (and the rectangle) is 1/2 a b. [See Figure 4 .]  If we
use x instead of a for the length of one leg and mx instead of b for the length
of the other leg then we have the area determined by the numbers m and x where m is the ratio of
b to a, m = b/a.

.

The Fundamental Theorem of Calculus. 
One of the most important results of the calculus, now referred to as the "Fundamental

Theorem of Calculus," relates the tangent problem to the area problem. This result was known to
Isaac Barrow, Newton's teacher and predecessor as professor of mathematics at Cambridge
University in England. In its geometric formulation we refer to it as Barrow's Theorem. Here is
a slight paraphrasing of Barrow's original result.  

Barrow's Theorem
Hypotheses: 
Suppose Y is a curve intersecting the line OX only at the point O.
Suppose further that the curve A has the following properties:
•  For a point P chosen on the curve A there is a corresponding point

Q on the curve Y so that the segment PQ intersects the line OX at
the point R forming a right angle. 

• The numerical value of the length of segment PR is the same as the
numerical value of the area of the region enclosed by the curve Y,
the segment OR and segment RQ. (See Figure 5 and note the
shading of the appropriate region.) 

Suppose the point T is chosen on the segment OR so that the numerical
value of the rectangle with sides TR and RQ is equal to the numerical value
of the length of the segment  PR.

Conclusion: The line TP is tangent to the curve A at the point P.   2

Figure 5
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Comments: Barrow's Theorem certainly relates the tangent and area problems. To solve the
tangent problem for the area curve A, we need only solve the area problem related to the curve Y,
that is to find the point T so that the rectangle determined by T has the appropriate area.

Though in Figure 5 the curve Y appears to be a line, the curve Y can be any curve, without
specifying any special type. Of course with a more general curve for Y the problem of finding the
curve A precisely becomes much more difficult. At this stage don't worry about the scales in
Figure 5. With the appropriate units the figure is accurate, but that is not our concern at this
stage. Our purpose here is to show a coonection between the area and tangent problems.

We can state Barrow's Theorem in slightly more modern terms, using the concept of the slope

tanof a line. If the line tangent to A at the point P has a slope, m , then Barrow's Theorem says this
slope is precisely the value of the length of the segment RQ. 

.
What is most notable about Barrow's Theorem is the absence of algebra from its original

statement and proof. It was primarily the geometric content that appeared in Barrow's work.  Only
when Newton and Leibniz arrived at algebraic versions of this result did its utility become apparent.

Newton and Leibniz both developed algebraic methods for a calculus of tangents and with that
they were able to apply Barrow's Theorem to explore algebraic methods for connecting the calculus
of tangents to a calculus that systematically resolves many problems of area, as well as problems
of volume, arc length, etc.  

What then is the calculus? 
Briefly again, calculus is a conceptual framework which provides systematic techniques for

solving problems suitably posed in the language of analytic  geometry and algebra.

Is it easy to list the types of problems that calculus can  solve? 
Some problem types frequently mentioned in discussions of the calculus over the centuries of its

development are quite easy to characterize. Other problem types have developed in the past century
or so as a result of the expansion of the use of mathematics ( beyond the physical sciences of
physics, chemistry, and engineering, into disciplines such as biology, medicine, and economics).
More recently,with the increased importance of probability and statistics in all of the sciences,
further applications of the calculus have arisen . 

Here is a list of some traditional and non-traditional problems that we will investigate and solve
as we progress in our study of the calculus.

         
1. The Tangent Problem. Determine the line tangent to a given curve at a given point. (Also,

define precisely the concept of  "tangent.") 
For example, determine the line in the plane tangent to the circle with equation X  + Y  = 25 at 2  2

the point (-4,3).
2. The Velocity Problem. Determine the instantaneous velocity of a moving object. (Also,



Chapter 0.A  1/18/11 I.5

define precisely the concept of "instantaneous  velocity.") 
For example, determine the instantaneous velocity at time t = 5 seconds of an object moving on

a straight line with its distance from a given point P at time t seconds being t  + 6t meters?    2

3. The Extremum Problems. Determine the maximum and minimum values of a dependent
variable. 

For example, when Y =  X  - 6X, determine any maximum and minimum values for the 2

dependent variable Y as X is varies over real numbers between 0 and 10.   
4. The Tangent-Curve Problem Reversed. Determine a curve satisfying two conditions: 
i) The curve passes through a given point, and 
ii) at any point on the curve, the tangent at that point fits a specific description based on the

point's location. 
For example, determine a curve through the point (1,2) so that the slope of the tangent to the

curve at the point (a,b) is 2 a - b. 
5. The Position Problem. (The Velocity Problem Reversed.) Determine the position of an

object moving on a straight line at a given instant, from knowledge of two specifications:
i) Its initial position, and 
ii) its instantaneous velocity at every instant. 
For example, determine the position of an object moving on a straight line at time t = 5 seconds,

knowing its initial position is P on the line and its instantaneous velocity at time t is precisely t  - 2

6t meters per second.
6. The Growth/Decay Problem. Determine the size of a population at a given time (past or

future) from knowledge of the following: 
i) The size of the population at a specific time, and
ii) the rate of growth /decay of the population at any time. 
For example, determine a biomass of a  population ten hours after an initial observation that the

biomass was 950 kilograms and the population is growing at a rate that is proportional to its current
size  and that after one hour its biomass was 1000 kilograms.

7. The Area Problem. Determine the area of a region enclosed by suitably defined curves. 
For example, determine the area of the planar region enclosed by the X - axis, the lines X = 2,

X = 5, and the parabola with  equation Y =  X  - 6X.  2

8. The Arc Length Problem. Determine the length of a suitably defined curve. 
For example, determine the length of the parabola with equation Y =  X  - 6X between the points 2

(0,0) and (6,0). 
9. The Probability Expected Value - Mean Problem. Determine the expected value of a

measurement, X, taken during an experiment where we know the probability that X< A. [The
expected value of X is the number that in theory would be close to any average of the values
for X if the experiment is repeated a very large number of times.] 

For example, suppose we throw a dart at a circular magnetic dart board of radius 2 feet and we
measure X as the distance from where the dart lands to the center of the board. Given that the
probability that X< A is A /4 for 0# A # 2, what is the expected value of X? that is, what is the2

expected distance from where the dart lands to the center of the target? 

Backgrounds for studying the Calculus: Now that you have a better idea of what mathematical
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problems we can solve using calculus, we will review some useful background knowledge and skills
from your prior studies. The concept and terminology of functions provide important foundations
and  valuable language for the study of calculus.

To understand calculus you should have a background that includes

   1. numbers and variables in the context of algebra;
   2. equations and functions both algebraically and visually; and
   3. "real world" applications that use functions to relate the quantities involved.

So what is a sensible approach in preparation  for the study of calculus?
To Prepare you, our sensible calculus approach will: 

   1. Review and renew your understanding of numbers and variables as used in algebra.
   2. Review and renew your understanding of equations both algebraically and visually.
   3. Review, renew, and expand your understanding of functions both algebraically and visually.
   4. Connect "real world" applications to equations and functions.
   5. Introduce some problem  types encountered in calculus where non-calculus techniques can

be used to find solutions.
   6. Introduce methods from current technology that make analysis easier and that form a

foundation for later use of technology in studying calculus.
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Figure 6 
Not drawn to scale.

0.A. Exercises. In these problems assume Barrow's Theorem is true. The
problems ask you to find the slope of lines tangent to parabolas arising from
quadratic functions of the form Y = CX . [Now is good time to reread the 2

statement of Barrow’s Theorem.]   
1. Suppose the right triangle OXQ as given in Figure 6 has side OX of length

5 on the horizontal axis and vertical side XQ of length 10. Above triangle OXQ
is the area curve A, which is related to the line Y determined by vertices O and
Q.

a. Let x, q and p be defined as follows:
• x denotes the length of segment OX',
• q denotes the length of segment X'Q', and 
• p denoted the length of segment X'P'= p 
Give an equation relating q and x. Give an equation relating p and x. [Remember the numerical

value of the length of  X'P' is the same as the numerical value of the triangular area of the region
enclosed by the X-axis, the line segment X'Q' and the line segment OQ'.] 

b. When x = 3 find the position of T so that P' T is a line tangent to the curve A at P'.  
c. Find the slope of the line tangent to the curve A at P' when x=3.  
d. Find the slope of the line tangent to the curve A at P' when x = 1 , 2, and 4. 
e. Find the slope of the line tangent to the curve A at P' when x = a.

2. Suppose the right triangle OXQ as given in Figure 6 has side OX of length 10 on the horizontal
axis and vertical side XQ of length 5. Above triangle OXQ is the area curve A, which is related to
the line Y determined by vertices O and Q.

a. Let x, q and p be defined as follows:
• x denotes the length of segment OX',
• q denotes the length of segment X'Q', and 
• p denoted the length of segment X'P'= p 
Give an equation relating q and x. Give an equation relating p and x. [Remember the numerical

value of the length of  X'P' is the same as the numerical value of the triangular area of the region
enclosed by the X-axis, the line segment X'Q' and the line segment OQ'.] 

b. When x = 5 find the position of T so that P' T is a line tangent to the curve A at P'.  
c. Find the slope of the line tangent to the curve A at P' when x=5.  
d. Find the slope of the line tangent to the curve A at P' when x = 1 , 2, and 4. 
e. Find the slope of the line tangent to the curve A at P' when x = a. 

3. Suppose the right triangle OXQ as given in Figure 6 has side OX of length 8 on the horizontal
axis and vertical side XQ of length 8. Above triangle OXQ sketch the area curve A, which is related
to the line Y determined by vertices O and Q.

a. Let x, q and p be defined as follows:
• x denotes the length of segment OX',
• q denotes the length of segment X'Q', and 
• p denoted the length of segment X'P'= p 
Give an equation relating q and x. Give an equation relating p and x. [Remember the numerical
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value of the length of  X'P' is the same as the numerical value of the triangular area of the region
enclosed by the X-axis, the line segment X'Q' and the line segment OQ'.] 

b. When x = 5 find the position of T so that P' T is a line tangent to the curve A at P'.  
c. Find the slope of the line tangent to the curve A at P' when x=5.  
d. Find the slope of the line tangent to the curve A at P' when x = 1 , 2, 3, and 4. 
e. Find the slope of the line tangent to the curve A at P' when x = a. 

4. Suppose the right triangle OXQ as given in Figure 6 has side OX of length L (>1) on the
horizontal axis and vertical side XQ of length M. Above triangle OXQ sketch the area curve A,
which is related to the line Y determined by vertices O and Q.

a. Let x, q and p be defined as follows:
• x denotes the length of segment OX',
• q denotes the length of segment X'Q', and 
• p denoted the length of segment X'P'= p 
Give an equation relating q and x. Give an equation relating p and x. [Remember the numerical

value of the length of  X'P' is the same as the numerical value of the triangular area of the region
enclosed by the X-axis, the line segment X'Q' and the line segment OQ'.] 

b. When x = 1 find the position of T so that P' T is a line tangent to the curve A at P'.  
c. Find the slope of the line tangent to the curve A at P' when x = a. 

5. Show that the line tangent to the graph of Y= CX  at the point (a,Ca ) where a>0 has slope 2  2

2Ca. [Hint: Relate the curve to a right triangle with legs of length L and 2CL and use Barrow's
Theorem.]

Other exercises to cover some of the following trails with minimum or no reliance on functions:
Connection between slope and rates and velocity.
rates for downloading software, files and mp3's as function of time : size of file downloaded at

time t: internet connection speed.
connection be velocity and accumulated distance
coonection between rates and accumulated trash
max/ mins and graphing ??
For areas and arc length - simple polygons and estimations of curved figures Maybe based

on triangles - Connect to archimedes and area of circle. Maybe Euclid. Area of parabola for
estimation. or maybe by Don Albers Aproach.

Probability with a constant density. Uniform distribution. Step distribution. 

[Add more exercises/investigations related to rates and accumulations- maybe connecting
with the graphical.]
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Legend for variables used in proof of Barrow’s Theorem
p=length of segment PR
p*=length of segment P*R*
q=area betw y and ORQ
q*=area betw y and OR*Q*

r=length of segment UR
s=length of segment SU
t=area or rect det by T and Q
u=length of segment PU
u*=length of segment P*U

w=length of segment TR
x=length of segment OR
x*=length of segment OR*
y=length of segment RQ

0.A  APPENDIX: THE GEOMETRIC PROOF OF BARROW'S THEOREM
We begin by recalling the statement of Barrow's Theorem. 
Theorem: 
Hypotheses: 
Suppose Y is a curve intersecting the line OX only at the point O.
Suppose further that the curve A has the following properties:
•  For a point P chosen on the curve A there is a corresponding point Q

on the curve Y so that the segment PQ intersects the line OX at the
point R forming a right angle. 

• The numerical value of the length of segment PR, p, is the same as the
numerical value of the area of the region enclosed by the curve Y, the
segment OR and segment RQ, q, so p= q. (See Figure 7.) 

Suppose the point T is chosen on the segment OR so that the numerical
value of the area of the rectangle with sides TR and RQ, which we’ll denote  t, is equal to p.

Conclusion: The line TP is tangent to the curve A at the point P.

Proof: We follow the ideas in Barrow's original presentation.  Beware that his proof is geometric,
and we are presenting some of it algebraically.

To show that TP is tangent to the curve A at the point P, we'll show that Pis the only point on
both the curve A and the line TP. We’ll do this by considering a point P*
(� P )on the curve A and show that the line TP doesn't pass through P*.

For convenience [like 7-11], let’s assume that if the point P is moved
to the right, on the curve A, then the lengths of the segments OR, x, and
RQ, y, increase. Furthermore, we’ll assume that P* is some point on A
between O and P.   

Draw a line parallel to the X axis  through P*.  Now that you have
constructed this line, label the point where this line intersects TP as S, and
the point where it intersects PR as U. (See Figure 8.) 

Recall that T was selected so that t = p, and so p = y * w where w is the
numerical value of the length of segment TR. Thus y = p/w.  

Notice that triangle TPR is similar to triangle SPU, and since corresponding sides of similar
triangles are proportional we have

Figure 7

Figure 8
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p/w = u/s  where u is the numerical value of the length of segment PU and s is the numerical
value of the length of segment SU.

Combining these last two equalities using the transitive property, we
now have y = u/s.

Multiplying both sides of this equation by s  we have that y C s = u.

Draw a line through P* parallel to line PQ labeling the point where this
line intersects line OR as R*, and the point where this line intersects the
curve Y as Q*.   Because of the defining properties of the curve A, since
P* is on the curve A and R* is on OX, and Q* is on curve Y, then the
numerical value of the length of P*R*, p*, is equal to the numerical value
of the area of the region enclosed by the curve Y, segment OR*, and
segment R*Q*, q*. (See Figure 9.) 

Now because quadrilateral P*R*RU is a rectangle, then p* = r where r is
the numerical value of the length of segment UR.  Since p = u + r, then u =
p - r = p - p*.  Subtracting corresponding areas with equal numerical value,
we find that u must equal the numerical value of the region enclosed by line
segments R*Q*, R*R, RQ, and the curve Y between Q and Q*. [See Figure
10.] 

But this region is contained in a rectangle determined by R*R and RQ.
[What assumption justifies this?] So u is less than the product y (x-x*) where 

x* is the numerical value of the length of segment OR*.  Recall that u = y C
s.

Thus we can conclude that y C s. < y.C(x-x*) and therefore s < (x-x*).  But 

(x-x*) = u* where u* is the numerical value of the length of segment P*U  , so s < u*, i.e., segment
SU is shorter then segment P*U, showing that P* =/  S.

A similar argument (left as an exercise) shows that if P* is to the right of P then P* is also
not on the line TP.

EOP.

Figure 9

Figure 10
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