Mapping Figures Workshop University of Utah July 6, 2012

Martin Flashman

Professor of Mathematics Humboldt State University <u>flashman@humboldt.edu</u> http://users.humboldt.edu/flashman

Session I Linear Mapping Figures

We begin our introduction to mapping figures by a consideration of linear functions :

"y = f(x) = mx + b"

Mapping Figures

A.k.a. Function Diagrams Dynagraphs

Written by <u>Howard Swann</u> and John Johnson

A early source for visualizing functions at an elementary level before calculus.

This is copyrighted material!

Mapping Diagrams and Functions

- <u>SparkNotes Math Study Guides Algebra II:</u> Functions Traditional treatment. - http://www.sparknotes.com/math/algebra2/functions/
- Function Diagrams. by Henri Picciotto **Excellent Resources!**
 - Henri Picciotto's Math Education Page
 - Some rights reserved
- Flashman, Yanosko, Kim https://www.math.duke.edu//education/prep02/te ams/prep-12/

Outline of Remainder of • Linear Functions: They are everywhere!

- Tables
- Graphs
- Mapping Figures
- Excel, Winplot and other technology Examples
- Characteristics and Questions
- Understanding Linear Functions Visually.

Visualizing Linear Functions

- Linear functions are both necessary, and understandable- even without considering their graphs.
- There is a sensible way to visualize them using "mapping figures."
- Examples of <u>important function features (like "slope"</u> <u>and intercepts)</u> will be illustrated with mapping figures.
- Examples of activities for students that engage understanding both function and linearity concepts.
- Examples of these mappings using simple straight edges as well as technology such as Winplot (freeware from Peanut Software), Geogebra, and possibly Mathematica and GSP
- Winplot is available from http://math.exeter.edu/rparris/peanut/

Linear Functions: They are everywhere!

- Where do you find Linear Functions?
 At home:
 - On the road:
 - At the store:
 - In Sports/ Games

x 5 x - 7 3 Complete the table. 2 Complete the table. 1 Complete the table. -1 Complete the table. -2 Complete the table. -3 Complete the table. -2 Complete the table. -3 Complete the table. -4 Complete the table. -7 For which x is f(x) > 0?

Linear Functions: Tables 5 x - 7 х Complete the table. 3 8 x = 3,2,1,0,-1,-2,-32 3 f(x) = 5x - 71 -2 0 -7 f(0) = ___? -1 -12 -2 -17 -3 -22 For which x is f(x) > 0?

Simple Examples are important!

- f(x) = x + C Added value: C
- f(x) = mx Scalar Multiple: m Interpretations of m:
 - slope
 - rate
 - Magnification factor
 - m > 0 : Increasing function
 - m = 0 : Constant function [WS Example]
 - m < 0 : Decreasing function [WS Example]

Simple Examples are important!

- f(x) = mx + b with a mapping figure -Five examples:
- Example 1: m =-2; b = 1: f(x) = -2x + 1
- Example 2: m = 2; b = 1: f(x) = 2x + 1
- Example 3: $m = \frac{1}{2}$; b = 1: $f(x) = \frac{1}{2}x + 1$
- Example 4: m = 0; b = 1: f(x) = 0 x + 1
- Example 5: m = 1; b = 1: f(x) = x + 1

End of Session I

- Questions
- Break food and thought
- Partner/group integration task

Function-Equation Questions with linear focus points

- Solve a linear equations:
 2x+1 = 5
 2x+1 = -x + 2
 - Use focus to find x.
- "fixed points": f(x) = x
 Use focus to find x.

Morning and Lunch Break: Think about These Problems (in Groups 1-2; 3-4)

- M.1 How would you use the Linear Focus to find the mapping figure for the function inverse for a linear function when m≠0?
- M.2 How does the choice of axis scales affect the position of the linear function focus point and its use in solving equations?
- **M.3 Describe the visual features of the mapping figure for the quadratic** function $f(x) = x^2$. How does this generalize for *even* functions where f(-x) = f(x)?
- M.4 Describe the visual features of the mapping figure for the cubic function $f(x) = x^3$. How does this generalize for *odd* functions where f(-x) = -f(x)?

Session II More on Linear Mapping Figures

We continue our introduction to mapping figures by a consideration of the **composition of linear functions**.

Compositions are keys!

An example of composition with mapping figures of simpler (linear) functions.

Compositions are keys! Linear Functions can be understood and visualized as compositions with mapping figures of simpler linear functions. $-f(x) = 2 \times + 1 = (2x) + (2x) +$

Inverses, Equations and Mapping Figures

- Inverse: If f(x) = y then invf(y)=x.
- So to find invf(b) we need to find any and all x that solve the equation f(x) = b.
- How is this visualized on a mapping figure?
- Find b on the target axis, then trace back on any and all arrows that "hit"b.

Inverse linear functions:

- Use transparency for mapping figures-
 - Copy mapping figure of g to transparency.
 - Flip the transparency to see mapping
 - figure of inverse function g. ("before or after")
 - invg(g(a)) = a; g(invg(b)) = b;
- Example i: g(x) = 2x; invg(x) = 1/2 x
- Example ii: h(x) = x + 1; invh(x) = x 1

Mapping Figures and Inverses Inverse linear functions:

- $\boldsymbol{\cdot}$ socks and shoes with mapping figures
- g(x) = 2x; invf(x) = 1/2 x
- h(x) = x + 1; invh(x) = x 1

•
$$f(x) = 2 x + 1 = (2x) + 1 = h(q(x))$$

- inverse of f: invf(x)=invg(invh(x))=1/2(x-1)

Mapping Figures and Inverses

Inverse linear functions:

- "socks and shoes" with mapping figures
- f(x) = 2(x-1) + 3:
 - g(x)=x-1 h(u)=2u; k(t)=t+3 - Inverse of f: 1/2(x-3) +1
- 0.0- 0.0--1.0- -1.0-

End of Session II

- Questions
- Lunch Break food and thought
- Partner/group integration task

Lunch Break: Think about These Problems (in Groups 1-3; 4-5)

- L.1 Describe the visual features of the mapping figure for the quadratic function $f(x) = x^2$. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.2 Describe the visual features of the mapping figure for the quadratic function $f(x) = A(x-h)^2 + k$ using composition with simple linear functions. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L.3 Describe the visual features of a mapping figure for the square root function $g(x) = \sqrt{x}$ and relate them to those of the quadratic $f(x) = x^2$. Domain? Range? Increasing/Decreasing? Max/Min? Concavity? "Infinity"?
- L4 Describe the visual features of the *m*apping figure for the reciprocal function f(w) = 1/x. Domain? Range? "Asymptotes" and "infinity"? Function Inverse?
- L.5 Describe the visual features of the mapping figure for the linear fractional function f(x) = A/(x-h) + k using composition with simple linear functions. Domain? Range? "Asymptotes" and "infinity"? Function Inverse?

Session III More on Mapping Figures: Quadratic, Exponential and Logarithmic Functions

We continue our introduction to mapping figures by a consideration of quadratic, exponential and logarithmic functions.

Examples on Excel, Winplot, Geogebra

- Excel example:
- Winplot examples:
 - -Linear Mapping examples
- Geogebra examples:
 - -dynagraphs.ggb
 - -Composition

Web links

- https://www.math.duke.edu//education/prep02/teams/pre p-12/
- http://users.humboldt.edu/flashman/TFLINX.HTM
- <u>http://www.dynamicgeometry.com/JavaSketchpad/Galler</u> <u>y/Trigonometry and Analytic Geometry/Dynagraphs.ht</u> <u>ml</u>
- http://demonstrations.wolfram.com/Dynagraphs/
- <u>http://demonstrations.wolfram.com/ComposingFunctions</u> <u>UsingDynagraphs/</u>

Quadratic Functions

- Usually considered as a key example of the power of analytic geometry- the merger of algebra with geometry.
- The algebra of this study focuses on two distinct representations of of these functions which mapping figures can visualize effectively to illuminate key features.

$$-f(x) = Ax^2 + Bx + C$$

$$- f(x) = A (x-h)^2 + k$$

Examples

- Use compositions to visualize
 f(x) = 2 (x-1)² = 2x² 4x + 2
 - $-g(x) = 2(x-1)^2 + 3 = 2x^2 4x + 5$
- Observe how even symmetry is transformed.
- These examples illustrate how a mapping figure visualization of composition with linear functions can assist in understanding other functions.

Quadratic Equations and Mapping Figures

- To solve $f(x) = Ax^2 + Bx + C = 0$.
- Find 0 on the target axis, then trace back on any and all arrows that "hit" 0.
- Notice how this connects to x = -B/(2A) for symmetry and the issue of the number of solutions.

Definition • Algebra Definition b^L = N if and only if log b(N) = L • Functions: • f(x)= b^x = y; invf(y) = log b(y) = x • log b = invf

Visualize Applications with Mapping Figures

"Simple" Applications

I invest \$1000 @ 3% compounded continuously. How long must I wait till my investment has a value of \$1500?
Solution: A(t) = 1000 e ^{0.03t}.
Find t where A(t) = 1500.
Visualize this with a mapping figure before further algebra.

"Simple" Applications

Solution: $A(t) = 1000 e^{0.03t}$. Find t where A(t) = 1500. Algebra: Find t where u=0.03t and 1.5 = e^{u}

Consider simpler mapping figure on next slide

End of Session III

- Questions
- Break food and thought
- Partner/group integration task

Session IV More on Mapping Figures: Trigonometry and Calculus Connections

We complete our introduction to mapping figures by a consideration of trigonometric functions and some connections to calculus.

Trig Equations and Mapping Figures

- To solve trig(x) = z.
- Find z on the target axis, then trace back on any and all arrows that "hit" z.
- Notice how this connects to periodic behavior of the trig functions and the issue of the number of solutions in an interval.
- This also connects to understanding the inverse trig functions.

Winplot Examples for <u>Trig Functions</u> <u>Trig Linear Compositions</u>

Scale change before trig.

Mapping figures and graphs for f(x) = sin(Bx)

- Amplitude and period

Connection to solving equations:

- Example: sin(2x) = 1 ;
 - $2x = \pi/2, 5\pi/2$
 - $x = \pi/4$, $5\pi/4$
 - Difference is period: $(5\pi \pi)/4 = \pi$.

Scale change before trig. Mapping figures and graphs for f(x) = sin(2x)

Amplitude:1 Period: π Use Excel here to demonstrate composition and a mapping figure.

Interpretations of these functions with circles.

Show with winplot: dot_races.wp2 on Moodle:Dot races! (winplot)

Period for $Y = \sin(Bx)$: $2\pi/B$

Scale change before trig

Mapping figures and graphs for f(x) = sin(x+D) or

- Amplitude and period and shift.

Connection to solving equations:

- Example: $sin(x + \pi/3) = 0$;

•
$$x + \pi/3 = 0$$

- Shift of sine curve to start at $x = -\pi/3$: $(-\pi/3,0)$
- Interpretations of these functions with circles.

Altogether!

- $f(x) = 3 \sin(2x + \pi/3) + 2$
- Mapping figure: Before $u = 2x + \pi/3$
 - After y = 3z + 2
- MIDDLE: z = sin(u).
- Amplitude :3, period: π , and shift: ???.
- Visualize on circle. Dot races and mapping figures.
- · Solve equations for period and shift.
- u = 0 and $u = 2\pi$. Period = difference in x.

More References

More References

 Goldenberg, Paul, Philip Lewis, and James O'Keefe. "Dynamic Representation and the Development of a Process Understanding of Function." In The Concept of Function: Aspects of Epistemology and Pedagogy, edited by Ed Dubinsky and Guershon Harel, pp. 235– 60. MAA Notes no. 25. Washington, D.C.: Mathematical Association of America, 1992.

More References

- <u>http://www.geogebra.org/forum/viewtopic.php?f=</u> <u>2&t=22592&sd=d&start=15</u>
- "Dynagraphs}--helping students visualize function dependency • GeoGebra User Forum
- "degenerated" dynagraph game ("x" and "y" axes are superimposed) in GeoGebra: <u>http://www.uff.br/cdme/c1d/c1d-html/c1d-en.html</u>

