Visualizing Partial Derivatives without Graphs.

Martin Flashman.

Humboldt State University and Occidental College.

flashman@humboldt.edu

Abstract

- ▶ In this presentation the author will
 - explain and use free graphing technology (Winplot) to illustrate
 - how to visualize the partial derivative without graphs.
- ► The treatment is suitable for any introductory treatment of the concept.
- ► Based on mapping (transformation) figures this approach
 - allows students to understand the concepts in an n-dimensional context
 - without any change in presentation from that given for the ordinary derivative.

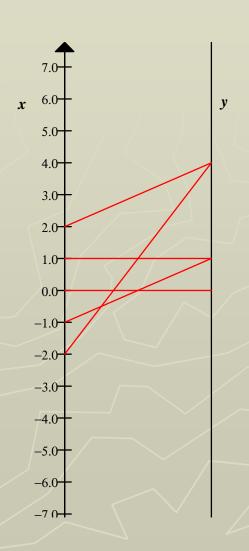
Foundations Mapping (Transformation) Figures

► Visualize functions $f: R \to R$ y = f(x)

- ▶Winplot examples:
 - linear
 - nonlinear

$$y = 2x - 1$$

$y = x^2$



Dynamic interpretation

- Dynamic interpretation of the derivative visualized using
 - x6/y6 =
 - rates
- ► Illustrate using Winplot

Visualizing Multi-Variable Functions

▶ Visualize functions $f: \mathbb{R}^n \to \mathbb{R}$

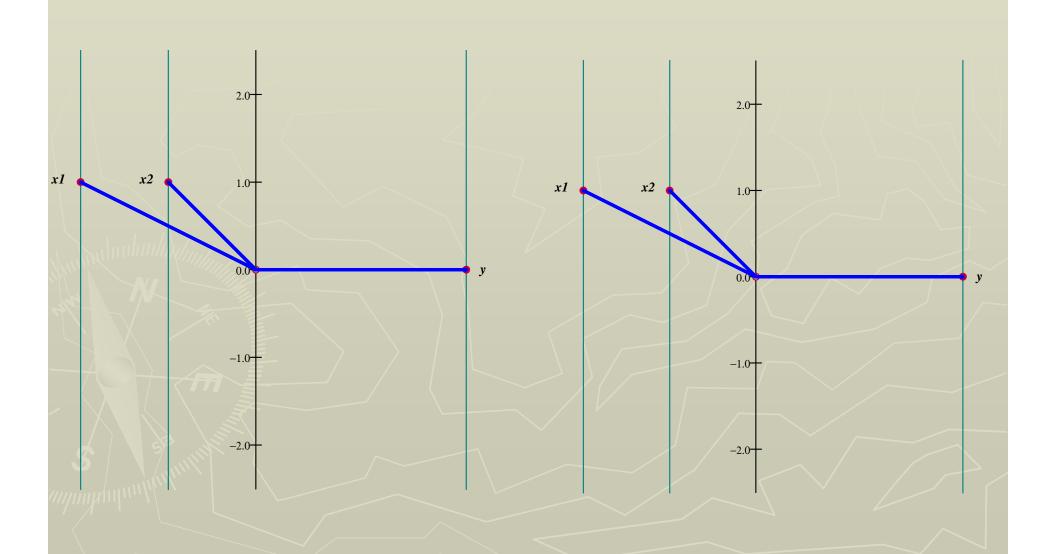
$$y = f(x_1, x_2, ..., x_n)$$

► Visualize $f: \mathbb{R}^2 \to \mathbb{R}$

$$y = f(x_1, x_2)$$

$$y = 2(x_1-1) - 3(x_2-1)$$

$$y = x_1^2 - x_2^3$$



Visualizing The Partial Derivative for

$$y = f(x_1, x_2)$$

Dynamic interpretation of the partial derivatives for $f: \mathbb{R}^2 \to \mathbb{R}$

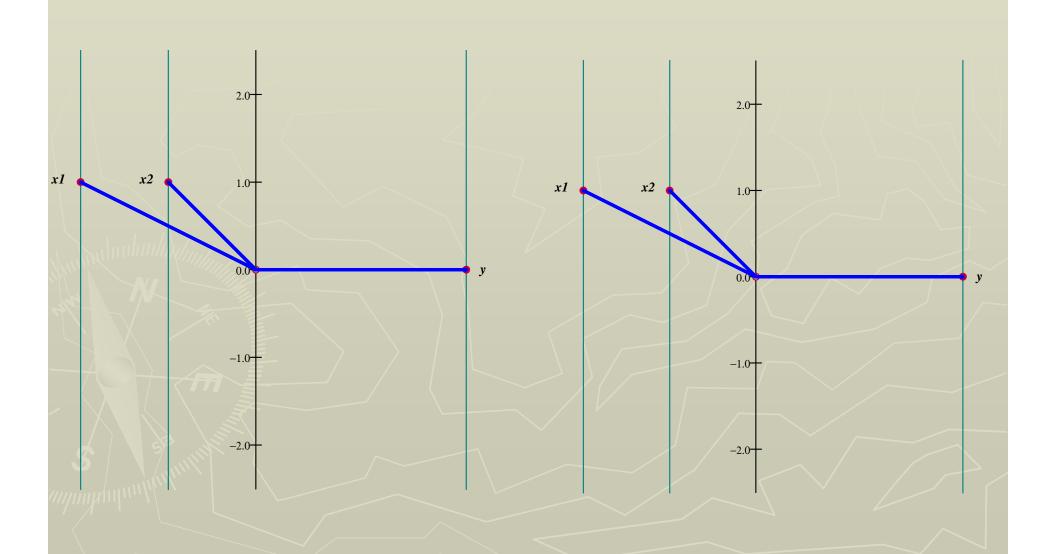
$$y = f(x_1, x_2)$$

visualized using $\partial y/\partial x_1$ and $\partial y/\partial x_2$.

- Static picture next slide.
- ► Winplot dynamic visualization.

$$y = 2(x_1-1) - 3(x_2-1)$$

$$y = x_1^2 - x_2^3$$



Visualizing The Partial Derivative for

$$y = f(x_1, x_2, \dots, x_n)$$

Dynamic interpretation of the partial derivative for $f: \mathbb{R}^n \to \mathbb{R}$

$$y = f(x_1, x_2, ..., x_n)$$
visualized using $\partial y/\partial x_1, ..., \partial y/\partial x_n$.

- Static picture here.
- Winplot dynamic visualization.

Conclusion

- ▶ Can use this visualization for other aspects of functions
- ► $f: \mathbb{R}^n \to \mathbb{R}^k$ $f(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_k)$ where $y_k = f_k(x_1, x_2, ..., x_n)$

Time!

- ► Questions?
- ► Responses?
- ► Further Communication by e-mail: flashman@humboldt.edu
- ► These notes will be available at

http://www.humboldt.edu/~mef2

Thanks-The end!