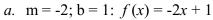
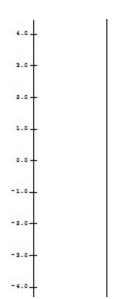
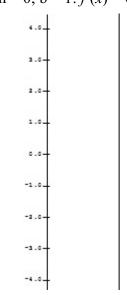

- 1. Suppose that f(x) = 5x 7 for all $x \in \mathbb{R}$.
 - a. Complete the following table:

x	-3	-2	-1	0	1	2	3
f(x)							

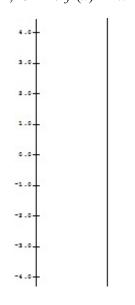
b. Complete the following mapping diagram for f with the indicated numbers (determine an appropriate scale for the target values.):

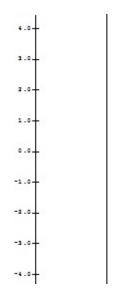


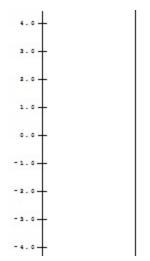

c. Sketch a graph for f based on the chart (determine an appropriate scale for the vertical axis.):


2. Let $f(x) = \mathbf{m} x + \mathbf{b}$ sketch mapping diagrams for the following:

Use the same scale for the second axis.




d. m = 0; b = 1: f(x) = 0 x + 1


b.
$$m = 2$$
; $b = 1$: $f(x) = 2x + 1$

e.
$$m = 1$$
; $b = 1$: $f(x) = x + 1$

c.
$$m = \frac{1}{2}$$
; $b = 1$: $f(x) = \frac{1}{2}x + 1$

3. Using the focus point to solve a problem. [Use the same scale for the second axis.]

E 1. Solving a linear equation: 2x+1=5

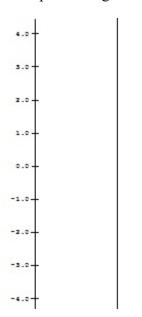
Let
$$f(x) = 2 x + 1$$

For which x does f(x) = 5?

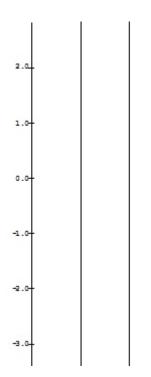
Solution: Find the focus points [2,1] for f. Use [2,1] to find the solutions.

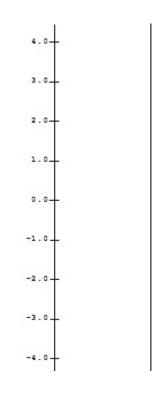
4. Suppose f is a linear function with
$$f(1) = 3$$
 and $f(3) = -1$.

Find f(0). Ans. _

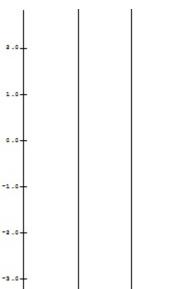

For which x does f(x) = 0. Ans.:

Solution: Find the focus point P_f for f.


Use P_f to find the solution.

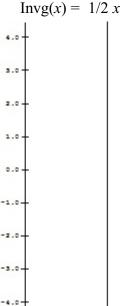


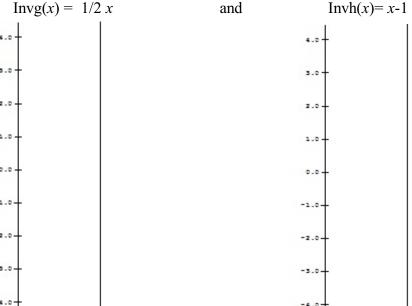
a. On separate diagrams sketch mapping diagrams for g(x) = 2x and h(x) = x+1



- 4.0-3.0-2.0-1.0-0.0--1.0--2.0--3.0-
- b. Use these sketches to draw a composite sketch of the mapping diagram for the composite function f(x) = h(g(x)) = (2x) + 1 and then a sketch for the mapping diagram of f(x) = 2x + 1

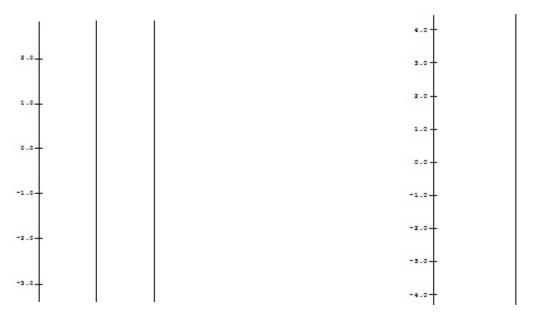
c. Use the sketches of part a. to draw a composite sketch of the mapping diagram for the composite function p(x) = g(h(x)) = 2(x + 1) and then a sketch for the mapping diagram of p(x) = 2(x + 1) = 2x + 2




3.0 2.0 1.0 0.0

Inverse linear functions:

6.


a. Make a transparency for mapping diagrams for g(x) = 2x and h(x) = x + 1. Flip the transparency over and use this on separate diagrams to sketch mapping diagrams for

"Socks and shoes" with mapping Diagrams

b. Recall f(x) = h(g(x)) = (2 x) + 1 Use the sketches of part a to draw a composite sketch of the mapping diagram for the composite function invf(x) = invg(invh(x)) = 1/2(x - 1) and then a sketch for the mapping diagram of invf(x) = 1/2(x - 1) = 1/2 x - 1/2

Think about These Problems:

7. How would you use the Linear Focus to find the mapping diagram for the function inverse for a linear function when $m \neq 0$?

8. How does the **choice of axis scales** affect the **position of the linear function focus point** and its use in solving equations?